

Welcome to mgmt’s documentation!

Contents:

	General documentation
	Overview

	Project Description

	Setup

	Features

	Reference

	Examples

	Development

	Authors

	Quick start guide
	Introduction

	Getting mgmt

	Running mgmt

	Examples

	Resource guide
	Overview

	Theory

	Resource Prerequisites

	Resource API

	Traits

	Resource Initialization

	Further considerations

	Send/Recv

	Composite resources

	Frequently asked questions

	Suggestions

	Prometheus support
	Metrics

	Alerting

	Grafana

	External resources

	Puppet guide
	Prerequisites

	Writing a suitable manifest

	Configuring Puppet

	Caveats

	Using Puppet in conjunction with the mcl lang

	Mixed graph example 3 - Multiple merges

General documentation

Overview

The mgmt tool is a next generation config management prototype. It’s not yet
ready for production, but we hope to get there soon. Get involved today!

Project Description

The mgmt tool is a distributed, event driven, config management tool, that
supports parallel execution, and librarification to be used as the management
foundation in and for, new and existing software.

For more information, you may like to read some blog posts from the author:

	Next generation config mgmt [https://purpleidea.com/blog/2016/01/18/next-generation-configuration-mgmt/]

	Automatic edges in mgmt [https://purpleidea.com/blog/2016/03/14/automatic-edges-in-mgmt/]

	Automatic grouping in mgmt [https://purpleidea.com/blog/2016/03/30/automatic-grouping-in-mgmt/]

	Automatic clustering in mgmt [https://purpleidea.com/blog/2016/06/20/automatic-clustering-in-mgmt/]

	Remote execution in mgmt [https://purpleidea.com/blog/2016/10/07/remote-execution-in-mgmt/]

	Send/Recv in mgmt [https://purpleidea.com/blog/2016/12/07/sendrecv-in-mgmt/]

	Metaparameters in mgmt [https://purpleidea.com/blog/2017/03/01/metaparameters-in-mgmt/]

There is also an introductory video [https://www.youtube.com/watch?v=LkEtBVLfygE&html5=1]
available. Older videos and other material is available.

Setup

You’ll probably want to read the quick start guide to
get going.

Features

This section details the numerous features of mgmt and some caveats you might
need to be aware of.

Autoedges

Automatic edges, or AutoEdges, is the mechanism in mgmt by which it will
automatically create dependencies for you between resources. For example,
since mgmt can discover which files are installed by a package it will
automatically ensure that any file resource you declare that matches a
file installed by your package resource will only be processed after the
package is installed.

Controlling autoedges

Though autoedges is likely to be very helpful and avoid you having to declare
all dependencies explicitly, there are cases where this behaviour is
undesirable.

Some distributions allow package installations to automatically start the
service they ship. This can be problematic in the case of packages like MySQL
as there are configuration options that need to be set before MySQL is ever
started for the first time (or you’ll need to wipe the data directory). In
order to handle this situation you can disable autoedges per resource and
explicitly declare that you want my.cnf to be written to disk before the
installation of the mysql-server package.

You can disable autoedges for a resource by setting the autoedge key on
the meta attributes of that resource to false.

Blog post

You can read the introductory blog post about this topic here:
https://purpleidea.com/blog/2016/03/14/automatic-edges-in-mgmt/

Autogrouping

Automatic grouping or AutoGroup is the mechanism in mgmt by which it will
automatically group multiple resource vertices into a single one. This is
particularly useful for grouping multiple package resources into a single
resource, since the multiple installations can happen together in a single
transaction, which saves a lot of time because package resources typically have
a large fixed cost to running (downloading and verifying the package repo) and
if they are grouped they share this fixed cost. This grouping feature can be
used for other use cases too.

You can disable autogrouping for a resource by setting the autogroup key on
the meta attributes of that resource to false.

Blog post

You can read the introductory blog post about this topic here:
https://purpleidea.com/blog/2016/03/30/automatic-grouping-in-mgmt/

Automatic clustering

Automatic clustering is a feature by which mgmt automatically builds, scales,
and manages the embedded etcd cluster which is compiled into mgmt itself. It is
quite helpful for rapidly bootstrapping clusters and avoiding the extra work to
setup etcd.

If you prefer to avoid this feature. you can always opt to use an existing etcd
cluster that is managed separately from mgmt by pointing your mgmt agents at it
with the --seeds variable.

Blog post

You can read the introductory blog post about this topic here:
https://purpleidea.com/blog/2016/06/20/automatic-clustering-in-mgmt/

Remote (“agent-less”) mode

Remote mode is a special mode that lets you kick off mgmt runs on one or more
remote machines which are only accessible via SSH. In this mode the initiating
host connects over SSH, copies over the mgmt binary, opens an SSH tunnel, and
runs the remote program while simultaneously passing the etcd traffic back
through the tunnel so that the initiators etcd cluster can be used to exchange
resource data.

The interesting benefit of this architecture is that multiple hosts which can’t
connect directly use the initiator to pass the important traffic through to each
other. Once the cluster has converged all the remote programs can shutdown
leaving no residual agent.

This mode can also be useful for bootstrapping a new host where you’d like to
have the service run continuously and as part of an mgmt cluster normally.

In particular, when combined with the --converged-timeout parameter, the
entire set of running mgmt agents will need to all simultaneously converge for
the group to exit. This is particularly useful for bootstrapping new clusters
which need to exchange information that is only available at run time.

Blog post

You can read the introductory blog post about this topic here:
https://purpleidea.com/blog/2016/10/07/remote-execution-in-mgmt/

Puppet support

You can supply a Puppet manifest instead of creating the (YAML) graph manually.
Puppet must be installed and in mgmt’s search path. You also need the
ffrank-mgmtgraph Puppet module [https://forge.puppet.com/ffrank/mgmtgraph].

Invoke mgmt with the --puppet switch, which supports 3 variants:

	Request the configuration from the Puppet Master (like puppet agent does)

mgmt run puppet --puppet agent

	Compile a local manifest file (like puppet apply)

mgmt run puppet --puppet /path/to/my/manifest.pp

	Compile an ad hoc manifest from the commandline (like puppet apply -e)

mgmt run puppet --puppet 'file { "/etc/ntp.conf": ensure => file }'

For more details and caveats see puppet-guide.md.

Blog post

An introductory post on the Puppet support is on
Felix’s blog [http://ffrank.github.io/features/2016/06/19/puppet-powered-mgmt/].

Reference

Please note that there are a number of undocumented options. For more
information on these options, please view the source at:
https://github.com/purpleidea/mgmt/.
If you feel that a well used option needs documenting here, please patch it!

Overview of reference

	Meta parameters: List of available resource meta parameters.

	Lang metadata file: Lang metadata file format.

	Graph definition file: Main graph definition file.

	Command line: Command line parameters.

	Compilation options: Compilation options.

Meta parameters

These meta parameters are special parameters (or properties) which can apply to
any resource. The usefulness of doing so will depend on the particular meta
parameter and resource combination.

AutoEdge

Boolean. Should we generate auto edges for this resource?

AutoGroup

Boolean. Should we attempt to automatically group this resource with others?

Noop

Boolean. Should the Apply portion of the CheckApply method of the resource
make any changes? Noop is a concatenation of no-operation.

Retry

Integer. The number of times to retry running the resource on error. Use -1 for
infinite. This currently applies for both the Watch operation (which can fail)
and for the CheckApply operation. While they could have separate values, I’ve
decided to use the same ones for both until there’s a proper reason to want to
do something differently for the Watch errors.

Delay

Integer. Number of milliseconds to wait between retries. The same value is
shared between the Watch and CheckApply retries. This currently applies for both
the Watch operation (which can fail) and for the CheckApply operation. While
they could have separate values, I’ve decided to use the same ones for both
until there’s a proper reason to want to do something differently for the Watch
errors.

Poll

Integer. Number of seconds to wait between CheckApply checks. If this is
greater than zero, then the standard event based Watch mechanism for this
resource is replaced with a simple polling mechanism. In general, this is not
recommended, unless you have a very good reason for doing so.

Please keep in mind that if you have a resource which changes every I seconds,
and you poll it every J seconds, and you’ve asked for a converged timeout of
K seconds, and I <= J <= K, then your graph will likely never converge.

When polling, the system detects that a resource is not converged if its
CheckApply method returns false. This allows a resource which changes every
I seconds, and which is polled every J seconds, and with a converged timeout
of K seconds to still converge when J <= K, as long as I > J || I > K,
which is another way of saying that if the resource finally settles down to give
the graph enough time, it can probably converge.

Limit

Float. Maximum rate of CheckApply runs started per second. Useful to limit
an especially eventful process from causing excessive checks to run. This
defaults to +Infinity which adds no limiting. If you change this value, you
will also need to change the Burst value to a non-zero value. Please see the
rate [https://godoc.org/golang.org/x/time/rate] package for more information.

Burst

Integer. Burst is the maximum number of runs which can happen without invoking
the rate limiter as designated by the Limit value. If the Limit is not set
to +Infinity, this must be a non-zero value. Please see the
rate [https://godoc.org/golang.org/x/time/rate] package for more information.

Sema

List of string ids. Sema is a P/V style counting semaphore which can be used to
limit parallelism during the CheckApply phase of resource execution. Each
resource can have N different semaphores which share a graph global namespace.
Each semaphore has a maximum count associated with it. The default value of the
size is 1 (one) if size is unspecified. Each string id is the unique id of the
semaphore. If the id contains a trailing colon (:) followed by a positive
integer, then that value is the max size for that semaphore. Valid semaphore
id’s include: some_id, hello:42, not:smart:4 and :13. It is expected
that the last bare example be only used by the engine to add a global semaphore.

Rewatch

Boolean. Rewatch specifies whether we re-run the Watch worker during a graph
swap if it has errored. When doing a graph compare to swap the graphs, if this
is true, and this particular worker has errored, then we’ll remove it and add it
back as a new vertex, thus causing it to run again. This is different from the
Retry metaparam which applies during the normal execution. It is only when
this is exhausted that we’re in permanent worker failure, and only then can we
rely on this metaparam.

Realize

Boolean. Realize ensures that the resource is guaranteed to converge at least
once before a potential graph swap removes or changes it. This guarantee is
useful for fast changing graphs, to ensure that the brief creation of a resource
is seen. This guarantee does not prevent against the engine quitting normally,
and it can’t guarantee it if the resource is blocked because of a failed
pre-requisite resource.
XXX: This is currently not implemented!

Reverse

Boolean. Reverse is a property that some resources can implement that specifies
that some “reverse” operation should happen when that resource “disappears”. A
disappearance happens when a resource is defined in one instance of the graph,
and is gone in the subsequent one. This disappearance can happen if it was
previously in an if statement that then becomes false.

This is helpful for building robust programs with the engine. The engine adds a
“reversed” resource to that subsequent graph to accomplish the desired “reverse”
mechanics. The specifics of what this entails is a property of the particular
resource that is being “reversed”.

It might be wise to combine the use of this meta parameter with the use of the
realize meta parameter to ensure that your reversed resource actually runs at
least once, if there’s a chance that it might be gone for a while.

Lang metadata file

Any module must have a metadata file in its root. It must be named
metadata.yaml, even if it’s empty. You can specify zero or more values in yaml
format which can change how your module behaves, and where the mcl language
looks for code and other files. The most important top level keys are: main,
path, files, and license.

Main

The main key points to the default entry point of your code. It must be a
relative path if specified. If it’s empty it defaults to main.mcl. It should
generally not be changed. It is sometimes set to main/main.mcl if you’d like
your modules code out of the root and into a child directory for cases where you
don’t plan on having a lot deeper imports relative to main.mcl and all those
files would clutter things up.

Path

The path key specifies the modules import search directory to use for this
module. You can specify this if you’d like to vendor something for your module.
In general, if you use it, please use the convention: path/. If it’s not
specified, you will default to the parent modules directory.

Files

The files key specifies some additional files that will get included in your
deploy. It defaults to files/.

License

The license key allows you to specify a license for the module. Please specify
one so that everyone can enjoy your code! Use a “short license identifier”, like
LGPLv3+, or MIT. The former is a safe choice if you’re not sure what to use.

Graph definition file

graph.yaml is the compiled graph definition file. The format is currently
undocumented, but by looking through the examples/ [https://github.com/purpleidea/mgmt/tree/master/examples/yaml/]
you can probably figure out most of it, as it’s fairly intuitive. It’s not
recommended that you use this, since it’s preferable to write code in the
mcl language front-end.

Command line

The main interface to the mgmt tool is the command line. For the most recent
documentation, please run mgmt --help.

--converged-timeout <seconds>

Exit if the machine has converged for approximately this many seconds.

--max-runtime <seconds>

Exit when the agent has run for approximately this many seconds. This is not
generally recommended, but may be useful for users who know what they’re doing.

--noop

Globally force all resources into no-op mode. This also disables the export to
etcd functionality, but does not disable resource collection, however all
resources that are collected will have their individual noop settings set.

--sema <size>

Globally add a counting semaphore of this size to each resource in the graph.
The semaphore will get given an id of :size. In other words if you specify a
size of 42, you can expect a semaphore if named: :42. It is expected that
consumers of the semaphore metaparameter always include a prefix to avoid a
collision with this globally defined semaphore. The size value must be greater
than zero at this time. The traditional non-parallel execution found in config
management tools such as Puppet can be obtained with --sema 1.

--remote <graph.yaml>

Point to a graph file to run on the remote host specified within. This parameter
can be used multiple times if you’d like to remotely run on multiple hosts in
parallel.

--allow-interactive

Allow interactive prompting for SSH passwords if there is no authentication
method that works.

--ssh-priv-id-rsa

Specify the path for finding SSH keys. This defaults to ~/.ssh/id_rsa. To
never use this method of authentication, set this to the empty string.

--cconns

The maximum number of concurrent remote ssh connections to run. This defaults
to 0, which means unlimited.

--no-caching

Don’t allow remote caching of the remote execution binary. This will require
the binary to be copied over for every remote execution, but it limits the
likelihood that there is leftover information from the configuration process.

--prefix <path>

Specify a path to a custom working directory prefix. This directory will get
created if it does not exist. This usually defaults to /var/lib/mgmt/. This
can’t be combined with the --tmp-prefix option. It can be combined with the
--allow-tmp-prefix option.

--tmp-prefix

If this option is specified, a temporary prefix will be used instead of the
default prefix. This can’t be combined with the --prefix option.

--allow-tmp-prefix

If this option is specified, we will attempt to fall back to a temporary prefix
if the primary prefix couldn’t be created. This is useful for avoiding failures
in environments where the primary prefix may or may not be available, but you’d
like to try. The canonical example is when running mgmt with --remote there
might be a cached copy of the binary in the primary prefix, but in case there’s
no binary available continue working in a temporary directory to avoid failure.

Compilation options

You can control some compilation variables by using environment variables.

Disable libvirt support

If you wish to compile mgmt without libvirt, you can use the following command:

GOTAGS=novirt make build

Disable augeas support

If you wish to compile mgmt without augeas support, you can use the following
command:

GOTAGS=noaugeas make build

Disable docker support

If you wish to compile mgmt without docker support, you can use the following
command:

GOTAGS=nodocker make build

Combining compile-time flags

You can combine multiple tags by using a space-separated list:

GOTAGS="noaugeas novirt nodocker" make build

Examples

For example configurations, please consult the examples/ [https://github.com/purpleidea/mgmt/tree/master/examples]
directory in the git source repository. It is available from:

https://github.com/purpleidea/mgmt/tree/master/examples

Systemd:

See misc/mgmt.service for a sample systemd unit file.
This unit file is part of the RPM.

To specify your custom options for mgmt on a systemd distro:

sudo mkdir -p /etc/systemd/system/mgmt.service.d/

cat > /etc/systemd/system/mgmt.service.d/env.conf <<EOF
Environment variables:
MGMT_SEEDS=http://127.0.0.1:2379
MGMT_CONVERGED_TIMEOUT=-1
MGMT_MAX_RUNTIME=0

Other CLI options if necessary.
#OPTS="--max-runtime=0"
EOF

sudo systemctl daemon-reload

Development

This is a project that I started in my free time in 2013. Development is driven
by all of our collective patches! Dive right in, and start hacking!
Please contact me if you’d like to invite me to speak about this at your event.

You can follow along on my technical blog [https://purpleidea.com/blog/].

To report any bugs, please file a ticket at: https://github.com/purpleidea/mgmt/issues.

Authors

Copyright (C) 2013-2019+ James Shubin and the project contributors

Please see the
AUTHORS [https://github.com/purpleidea/mgmt/tree/master/AUTHORS] file
for more information.

	github [https://github.com/purpleidea/]

	@purpleidea [https://twitter.com/#%21/purpleidea]

	https://purpleidea.com/

Quick start guide

Introduction

This guide is intended for users and developers. If you’re brand new to mgmt,
it’s probably a good idea to start by reading an
introductory article about the engine [https://purpleidea.com/blog/2016/01/18/next-generation-configuration-mgmt/]
and an introductory article about the language [https://purpleidea.com/blog/2018/02/05/mgmt-configuration-language/].
There are other articles and videos available if you’d like to
learn more or prefer different formats. Once you’re familiar with the general
idea, or if you prefer a hands-on approach, please start hacking…

Getting mgmt

You can either build mgmt from source, or you can download a pre-built
release. There are also some distro repositories available, but they may not be
up to date. A pre-built release is the fastest option if there’s one that’s
available for your platform. If you are developing or testing a new patch to
mgmt, or there is not a release available for your platform, then you’ll have
to build your own.

Downloading a pre-built release:

The latest releases can be found here [https://github.com/purpleidea/mgmt/releases/].
An alternate mirror is available here [https://dl.fedoraproject.org/pub/alt/purpleidea/mgmt/releases/].

Make sure to verify the signatures of all packages before you use them. The
signing key can be downloaded from https://purpleidea.com/contact/#pgp-key
to verify the release.

If you’ve decided to install a pre-build release, you can skip to the
Running mgmt section below!

Building a release:

You’ll need some dependencies, including golang, and some associated tools.

Installing golang

	You need golang version 1.11 or greater installed.

	To install on rpm style systems: sudo dnf install golang

	To install on apt style systems: sudo apt install golang

	To install on macOS systems install Homebrew [https://brew.sh]
and run: brew install go

	You can run go version to check the golang version.

	If your distro is too old, you may need to download [https://golang.org/dl/]
a newer golang version.

Setting up golang

	You can skip this step, as your installation will default to using ~/go/,
but if you do not have a GOPATH yet and want one in a custom location, create
one and export it:

mkdir $HOME/gopath
export GOPATH=$HOME/gopath

	You might also want to add the GOPATH to your ~/.bashrc or ~/.profile.

	For more information you can read the
GOPATH documentation [https://golang.org/cmd/go/#hdr-GOPATH_environment_variable].

Getting the mgmt code and associated dependencies

	Download the mgmt code into the GOPATH, and switch to that directory:

[-z "$GOPATH"] && mkdir ~/go/ || mkdir -p $GOPATH/src/github.com/purpleidea/
cd $GOPATH/src/github.com/purpleidea/ || cd ~/go/
git clone --recursive https://github.com/purpleidea/mgmt/
cd $GOPATH/src/github.com/purpleidea/mgmt/ || cd ~/go/src/github.com/purpleidea/mgmt/

	Add $GOPATH/bin to $PATH

export PATH=$PATH:$GOPATH/bin

	Run make deps to install system and golang dependencies. Take a look at
misc/make-deps.sh if you want to see the details of what it does.

Building mgmt

	Now run make to get a freshly built mgmt binary. If this succeeds, you can
proceed to the Running mgmt section below!

Installing a distro release

Installation of mgmt from distribution packages currently needs improvement.
They are not always up-to-date with git master and as such are not recommended.
At the moment we have:

	COPR [https://copr.fedoraproject.org/coprs/purpleidea/mgmt/] (currently dead)

	Arch [https://aur.archlinux.org/packages/mgmt/] (currently stale)

Please contribute more and help improve these! We’d especially like to see a
Debian package!

Running mgmt

	Run mgmt run --tmp-prefix lang examples/lang/hello0.mcl to try out a very
simple example! If you built it from source, you’ll need to use ./mgmt from
the project directory.

	Look in that example file that you ran to see if you can figure out what it
did! You can press ^C to exit mgmt.

	Have fun hacking on our future technology and get involved to shape the
project!

Examples

Please look in the examples/lang/ folder for some more
examples!

Resource guide

Overview

The mgmt tool has built-in resource primitives which make up the building
blocks of any configuration. Each instance of a resource is mapped to a single
vertex in the resource graph [https://en.wikipedia.org/wiki/Directed_acyclic_graph].
This guide is meant to instruct developers on how to write a brand new resource.
Since mgmt and the core resources are written in golang, some prior golang
knowledge is assumed.

Theory

Resources in mgmt are similar to resources in other systems in that they are
idempotent [https://en.wikipedia.org/wiki/Idempotence]. Our resources are
uniquely different in that they can detect when their state has changed, and as
a result can run to revert or repair this change instantly. For some background
on this design, please read the
original article [https://purpleidea.com/blog/2016/01/18/next-generation-configuration-mgmt/]
on the subject.

Resource Prerequisites

Imports

You’ll need to import a few packages to make writing your resource easier. Here
is the list:

	"github.com/purpleidea/mgmt/engine"
	"github.com/purpleidea/mgmt/engine/traits"

The engine package contains most of the interfaces and helper functions that
you’ll need to use. The traits package contains some base functionality which
you can use to easily add functionality to your resource without needing to
implement it from scratch.

Resource struct

Each resource will implement methods as pointer receivers on a resource struct.
The naming convention for resources is that they end with a Res suffix.

The resource struct should include an anonymous reference to the Base trait.
Other traits can be added to the resource to add additional functionality.
They are discussed below.

You’ll most likely want to store a reference to the *Init struct type as
defined by the engine. This is data that the engine will provide to your
resource on Init.

Lastly you should define the public fields that make up your resource API, as
well as any private fields that you might want to use throughout your resource.
Do not depend on global variables, since multiple copies of your resource
could get instantiated.

You’ll want to add struct tags based on the different frontends that you want
your resources to be able to use. Some frontends can infer this information if
it is not specified, but others cannot, and some might poorly infer if the
struct name is ambiguous.

If you’d like your resource to be accessible by the YAML graph API (GAPI),
then you’ll need to include the appropriate YAML fields as shown below. This is
used by the Puppet compiler as well, so make sure you include these struct
tags if you want existing Puppet code to be able to run using the mgmt
engine.

Example

type FooRes struct {
	traits.Base // add the base methods without re-implementation
	traits.Groupable
	traits.Refreshable

	init *engine.Init

	Whatever string `lang:"whatever" yaml:"whatever"` // you pick!
	Baz bool `lang:"baz" yaml:"baz"` // something else

	something string // some private field
}

Resource API

To implement a resource in mgmt it must satisfy the
Res [https://github.com/purpleidea/mgmt/blob/master/engine/resources.go]
interface. What follows are each of the method signatures and a description of
each.

Default

Default() engine.Res

This returns a populated resource struct as a Res. It shouldn’t populate any
values which already get a good default as the respective golang zero value. In
general it is preferable if the zero values make for the correct defaults.
(This is to say, resources are designed to behave safely and intuitively
when parameters take a zero value, whenever this is possible.)

Example

// Default returns some sensible defaults for this resource.
func (obj *FooRes) Default() Res {
	return &FooRes{
		Answer: 42, // sometimes, defaults shouldn't be the zero value
	}
}

Validate

Validate() error

This method is used to validate if the populated resource struct is a valid
representation of the resource kind. If it does not conform to the resource
specifications, it should return an error. If you notice that this method is
quite large, it might be an indication that you should reconsider the parameter
list and interface to this resource. This method is called by the engine
before Init. It can also be called occasionally after a Send/Recv operation
to verify that the newly populated parameters are valid. Remember not to expect
access to the outside world when using this.

Example

// Validate reports any problems with the struct definition.
func (obj *FooRes) Validate() error {
	if obj.Answer != 42 { // validate whatever you want
		return fmt.Errorf("expected an answer of 42")
	}
	return nil
}

Init

Init() error

This is called to initialize the resource. If something goes wrong, it should
return an error. It should do any resource specific work such as initializing
channels, sync primitives, or anything else that is relevant to your resource.
If it is not need throughout, it might be preferable to do some initialization
and tear down locally in either the Watch method or CheckApply method. The
choice depends on your particular resource and making the best decision requires
some experience with mgmt. If you are unsure, feel free to ask an existing
mgmt contributor. During Init, the engine will pass your resource a struct
containing some useful data and pointers. You should save a copy of this pointer
since you will need to use it in other parts of your resource.

Example

// Init initializes the Foo resource.
func (obj *FooRes) Init(init *engine.Init) error
	obj.init = init // save for later

	// run the resource specific initialization, and error if anything fails
	if some_error {
		return err // something went wrong!
	}
	return nil
}

This method is always called after Validate has run successfully, with the
exception that we can’t prevent a malicious or buggy libmgmt user to not run
this. In other words, you should expect Validate to have run first, but you
shouldn’t allow Init to dangerously rm -rf /$the_world if your code only
checks $the_world in Validate. Remember to always program safely!

Close

Close() error

This is called to cleanup after the resource. It is usually not necessary, but
can be useful if you’d like to properly close a persistent connection that you
opened in the Init method and were using throughout the resource. It is not
the shutdown signal that tells the resource to exit. That happens in the Watch
loop.

Example

// Close runs some cleanup code for this resource.
func (obj *FooRes) Close() error {
	err := obj.conn.Close() // close some internal connection
	obj.someMap = nil // free up some large data structure from memory
	return err
}

You should probably check the return errors of your internal methods, and pass
on an error if something went wrong.

CheckApply

CheckApply(apply bool) (checkOK bool, err error)

CheckApply is where the real work is done. Under normal circumstances, this
function should check if the state of this resource is correct, and if so, it
should return: (true, nil). If the apply variable is set to true, then
this means that we should then proceed to run the changes required to bring the
resource into the correct state. If the apply variable is set to false, then
the resource is operating in noop mode and no operational changes should be
made!

After having executed the necessary operations to bring the resource back into
the desired state, or after having detected that the state was incorrect, but
that changes can’t be made because apply is false, you should then return
(false, nil).

You must cause the resource to converge during a single execution of this
function. If you cannot, then you must return an error! The exception to this
rule is that if an external force changes the state of the resource while it is
being remedied, it is possible to return from this function even though the
resource isn’t now converged. This is not a bug, as the resources Watch
facility will detect the new change, ultimately resulting in a subsequent call
to CheckApply.

Example

// CheckApply does the idempotent work of checking and applying resource state.
func (obj *FooRes) CheckApply(apply bool) (bool, error) {
	// check the state
	if state_is_okay { return true, nil } // done early! :)

	// state was bad

	if !apply { return false, nil } // don't apply, we're in noop mode

	if any_error { return false, err } // anytime there's an err!

	// do the apply!
	return false, nil // after success applying
}

The CheckApply function is called by the mgmt engine when it believes a call
is necessary. Under certain conditions when a Watch call does not invalidate
the state of the resource, and no refresh call was sent, its execution might be
skipped. This is an engine optimization, and not a bug. It is mentioned here in
the documentation in case you are confused as to why a debug message you’ve
added to the code isn’t always printed.

Paired execution

For many resources it is not uncommon to see CheckApply run twice in rapid
succession. This is usually not a pathological occurrence, but rather a healthy
pattern which is a consequence of the event system. When the state of the
resource is incorrect, CheckApply will run to remedy the state. In response to
having just changed the state, it is usually the case that this repair will
trigger the Watch code! In response, a second CheckApply is triggered, which
will likely find the state to now be correct.

Summary

	Anytime an error occurs during CheckApply, you should return (false, err).

	If the state is correct and no changes are needed, return (true, nil).

	You should only make changes to the system if apply is set to true.

	After checking the state and possibly applying the fix, return (false, nil).

	Returning (true, err) is a programming error and can have a negative effect.

Watch

Watch() error

Watch is a main loop that runs and sends messages when it detects that the
state of the resource might have changed. To send a message you should write to
the input event channel using the Event helper method. The Watch function
should run continuously until a shutdown message is received. If at any time
something goes wrong, you should return an error, and the mgmt engine will
handle possibly restarting the main loop based on the retry meta parameter.

It is better to send an event notification which turns out to be spurious, than
to miss a possible event. Resources which can miss events are incorrect and need
to be re-engineered so that this isn’t the case. If you have an idea for a
resource which would fit this criteria, but you can’t find a solution, please
contact the mgmt maintainers so that this problem can be investigated and a
possible system level engineering fix can be found.

You may have trouble deciding how much resource state checking should happen in
the Watch loop versus deferring it all to the CheckApply method. You may
want to put some simple fast path checking in Watch to avoid generating
obviously spurious events, but in general it’s best to keep the Watch method
as simple as possible. Contact the mgmt maintainers if you’re not sure.

If the resource is activated in polling mode, the Watch method will not get
executed. As a result, the resource must still work even if the main loop is not
running.

Select

The lifetime of most resources Watch method should be spent in an infinite
loop that is bounded by a select call. The select call is the point where
our method hands back control to the engine (and the kernel) so that we can
sleep until something of interest wakes us up. In this loop we must wait until
we get a shutdown event from the engine via the <-obj.init.Done channel, which
closes when we’d like to shut everything down. At this point you should cleanup,
and let Watch close.

Events

If the <-obj.init.Done channel closes, we should shutdown our resource. When
When we want to send an event, we use the Event helper function. This
automatically marks the resource state as dirty. If you’re unsure, it’s not
harmful to send the event. This will ultimately cause CheckApply to run. This
method can block if the resource is being paused.

Startup

Once the Watch function has finished starting up successfully, it is important
to generate one event to notify the mgmt engine that we’re now listening
successfully, so that it can run an initial CheckApply to ensure we’re safely
tracking a healthy state and that we didn’t miss anything when Watch was down
or from before mgmt was running. You must do this by calling the
obj.init.Running method.

Converged

The engine might be asked to shutdown when the entire state of the system has
not seen any changes for some duration of time. The engine can determine this
automatically, but each resource can block this if it is absolutely necessary.
If you need this functionality, please contact one of the maintainers and ask
about adding this feature and improving these docs right here.

This particular facility is most likely not required for most resources. It may
prove to be useful if a resource wants to start off a long operation, but avoid
sending out erroneous Event messages to keep things alive until it finishes.

Example

// Watch is the listener and main loop for this resource.
func (obj *FooRes) Watch() error {
	// setup the Foo resource
	var err error
	if err, obj.foo = OpenFoo(); err != nil {
		return err // we couldn't startup
	}
	defer obj.whatever.CloseFoo() // shutdown our Foo

	// notify engine that we're running
	obj.init.Running() // when started, notify engine that we're running

	var send = false // send event?
	for {
		select {
		// the actual events!
		case event := <-obj.foo.Events:
			if is_an_event {
				send = true
			}

		// event errors
		case err := <-obj.foo.Errors:
			return err // will cause a retry or permanent failure

		case <-obj.init.Done: // signal for shutdown request
			return nil
		}

		// do all our event sending all together to avoid duplicate msgs
		if send {
			send = false
			obj.init.Event()
		}
	}
}

Summary

	Remember to call Running when the Watch is running successfully.

	Remember to process internal events and shutdown promptly if asked to.

	Ensure the design of your resource is well thought out.

	Have a look at the existing resources for a rough idea of how this all works.

Cmp

Cmp(engine.Res) error

Each resource must have a Cmp method. It is an abbreviation for Compare. It
takes as input another resource and must return whether they are identical or
not. This is used for identifying if an existing resource can be used in place
of a new one with a similar set of parameters. In particular, when switching
from one graph to a new (possibly identical) graph, this avoids recomputing the
state for resources which don’t change or that are sufficiently similar that
they don’t need to be swapped out.

In general if all the resource properties are identical, then they usually don’t
need to be changed. On occasion, not all of them need to be compared, in
particular if they store some generated state, or if they aren’t significant in
some way.

If the resource is identical, then you should return nil. If it is not, then
you should return a short error message which gives the reason it differs.

Example

// Cmp compares two resources and returns if they are equivalent.
func (obj *FooRes) Cmp(r engine.Res) error {
	// we can only compare FooRes to others of the same resource kind
	res, ok := r.(*FooRes)
	if !ok {
		return fmt.Errorf("not a %s", obj.Kind())
	}

	if obj.Whatever != res.Whatever {
		return fmt.Errorf("the Whatever param differs")
	}
	if obj.Flag != res.Flag {
		return fmt.Errorf("the Flag param differs")
	}

	return nil // they must match!
}

Traits

Resources can have different traits, which means they can be extended to have
additional functionality or special properties. Those special properties are
usually added by extending your resource so that it is compatible with
additional interface that contain the Res interface. Each of these interfaces
represents the additional functionality. Since in most cases this requires some
common boilerplate, you can usually get some or most of the functionality by
embedding the correct trait struct anonymously in your struct. This is shown in
the struct example above. You’ll always want to include the Base trait in all
resources. This provides some basics which you’ll always need.

What follows are a list of available traits.

Refreshable

Some resources may choose to support receiving refresh notifications. In general
these should be avoided if possible, but nevertheless, they do make sense in
certain situations. Resources that support these need to verify if one was sent
during the CheckApply phase of execution. This is accomplished by calling the
obj.init.Refresh() bool method, and inspecting the return value. This is only
necessary if you plan to perform a refresh action. Refresh actions should still
respect the apply variable, and no system changes should be made if it is
false. Refresh notifications are generated by any resource when an action is
applied by that resource and are transmitted through graph edges which have
enabled their propagation. Resources that currently perform some refresh action
include svc, timer, and password.

It is very important that you include the traits.Refreshable struct in your
resource. If you do not include this, then calling obj.init.Refresh may
trigger a panic. This is programmer error.

Edgeable

Edgeable is a trait that allows your resource to automatically connect itself to
other resources that use this trait to add edge dependencies between the two. An
older blog post on this topic is
available [https://purpleidea.com/blog/2016/03/14/automatic-edges-in-mgmt/].

After you’ve included this trait, you’ll need to implement two methods on your
resource.

UIDs

UIDs() []engine.ResUID

The UIDs method returns a list of ResUID interfaces that represent the
particular resource uniquely. This is used with the AutoEdges API to determine
if another resource can match a dependency to this one.

AutoEdges

AutoEdges() (engine.AutoEdge, error)

This returns a struct that implements the AutoEdge interface. This struct
is used to match other resources that might be relevant dependencies for this
resource.

Groupable

Groupable is a trait that can allow your resource automatically group itself to
other resources. Doing so can reduce the resource or runtime burden on the
engine, and improve performance in some scenarios. An older blog post on this
topic is
available [https://purpleidea.com/blog/2016/03/30/automatic-grouping-in-mgmt/].

Sendable

Sendable is a trait that allows your resource to send values through the graph
edges to another resource. These values are produced during CheckApply. They
can be sent to any resource that has an appropriate parameter and that has the
Recvable trait. You can read more about this in the Send/Recv section below.

Recvable

Recvable is a trait that allows your resource to receive values through the
graph edges from another resource. These values are consumed during the
CheckApply phase, and can be detected there as well. They can be received from
any resource that has an appropriate value and that has the Sendable trait.
You can read more about this in the Send/Recv section below.

Collectable

This is currently a stub and will be updated once the DSL is further along.

Resource Initialization

During the resource initialization in Init, the engine will pass in a struct
containing a bunch of data and methods. What follows is a description of each
one and how it is used.

Program

Program is a string containing the name of the program. Very few resources need
this.

Hostname

Hostname is the uuid for the host. It will be occasionally useful in some
resources. It is preferable if you can avoid depending on this. It is possible
that in the future this will be a channel which changes if the local hostname
changes.

Running

Running must be called after your watches are all started and ready. It is only
called from within Watch. It is used to notify the engine that you’re now
ready to detect changes.

Event

Event sends an event notifying the engine of a possible state change. It is
only called from within Watch.

Done

Done is a channel that closes when the engine wants us to shutdown. It is only
called from within Watch.

Refresh

Refresh returns whether the resource received a notification. This flag can be
used to tell a svc to reload, or to perform some state change that wouldn’t
otherwise be noticed by inspection alone. You must implement the Refreshable
trait for this to work. It is only called from within CheckApply.

Send

Send exposes some variables you wish to send via the Send/Recv mechanism. You
must implement the Sendable trait for this to work. It is only called from
within CheckApply.

Recv

Recv provides a map of variables which were sent to this resource via the
Send/Recv mechanism. You must implement the Recvable trait for this to work.
It is only called from within CheckApply.

World

World provides a connection to the outside world. This is most often used for
communicating with the distributed database. It can be used in Init,
CheckApply and Watch. Use with discretion and understanding of the internals
if needed in Close.

VarDir

VarDir is a facility for local storage. It is used to return a path to a
directory which may be used for temporary storage. It should be cleaned up on
resource Close if the resource would like to delete the contents. The resource
should not assume that the initial directory is empty, and it should be cleaned
on Init if that is a requirement.

Debug

Debug signals whether we are running in debugging mode. In this case, we might
want to log additional messages.

Logf

Logf is a logging facility which will correctly namespace any messages which you
wish to pass on. You should use this instead of the log package directly for
production quality resources.

Further considerations

There is some additional information that any resource writer will need to know.
Each issue is listed separately below!

Resource registration

All resources must be registered with the engine so that they can be found. This
also ensures they can be encoded and decoded. Make sure to include the following
code snippet for this to work.

func init() { // special golang method that runs once
	// set your resource kind and struct here (the kind must be lower case)
	engine.RegisterResource("foo", func() engine.Res { return &FooRes{} })
}

YAML Unmarshalling

To support YAML unmarshalling for your resource, you must implement an
additional method. It is recommended if you want to use your resource with the
Puppet compiler.

UnmarshalYAML(unmarshal func(interface{}) error) error // optional

This is optional, but recommended for any resource that will have a YAML
accessible struct. It is not required because to do so would mean that
third-party or custom resources (such as those someone writes to use with
libmgmt) would have to implement this needlessly.

The signature intentionally matches what is required to satisfy the go-yaml
Unmarshaler [https://godoc.org/gopkg.in/yaml.v2#Unmarshaler] interface.

Example

// UnmarshalYAML is the custom unmarshal handler for this struct.
// It is primarily useful for setting the defaults.
func (obj *FooRes) UnmarshalYAML(unmarshal func(interface{}) error) error {
	type rawRes FooRes // indirection to avoid infinite recursion

	def := obj.Default() // get the default
	res, ok := def.(*FooRes) // put in the right format
	if !ok {
		return fmt.Errorf("could not convert to FooRes")
	}
	raw := rawRes(*res) // convert; the defaults go here

	if err := unmarshal(&raw); err != nil {
		return err
	}

	*obj = FooRes(raw) // restore from indirection with type conversion!
	return nil
}

Send/Recv

In mgmt there is a novel concept called Send/Recv. For some background,
please read the introductory article [https://purpleidea.com/blog/2016/12/07/sendrecv-in-mgmt/].
When using this feature, the engine will automatically send the user specified
value to the intended destination without requiring much resource specific code.
Any time that one of the destination values is changed, the engine automatically
marks the resource state as dirty. To detect if a particular value was
received, and if it changed (during this invocation of CheckApply) from the
previous value, you can query the obj.init.Recv() method. It will contain a
map of all the keys which can be received on, and the value has a Changed
property which will indicate whether the value was updated on this particular
CheckApply invocation. The type of the sending key must match that of the
receiving one. This can only be done inside of the CheckApply function!

// inside CheckApply, probably near the top
if val, exists := obj.init.Recv()["SomeKey"]; exists {
	obj.init.Logf("the SomeKey param was sent to us from: %s.%s", val.Res, val.Key)
	if val.Changed {
		obj.init.Logf("the SomeKey param was just updated!")
		// you may want to invalidate some local cache
	}
}

The specifics of resource sending are not currently documented. Please send a
patch here!

Composite resources

Composite resources are resources which embed one or more existing resources.
This is useful to prevent code duplication in higher level resource scenarios.
The best example of this technique can be seen in the nspawn resource which
can be seen to partially embed a svc resource, but without its Watch.
Unfortunately no further documentation about this subject has been written. To
expand this section, please send a patch! Please contact us if you’d like to
work on a resource that uses this feature, or to add it to an existing one!

Frequently asked questions

(Send your questions as a patch to this FAQ! I’ll review it, merge it, and
respond by commit with the answer.)

Can I write resources in a different language?

Currently golang is the only supported language for built-in resources. We
might consider allowing external resources to be imported in the future. This
will likely require a language that can expose a C-like API, such as python or
ruby. Custom golang resources are already possible when using mgmt as a lib.
Higher level resource collections will be possible once the mgmt DSL is ready.

Why does the resource API have CheckApply instead of two separate methods?

In an early version we actually had both “parts” as separate methods, namely:
StateOK (Check) and Apply, but the decision
was made to merge the two into a single method. There are two reasons for this:

	Many situations would involve the engine running both Check and Apply. If
the resource needed to share some state (for efficiency purposes) between the
two calls, this is much more difficult. A common example is that a resource
might want to open a connection to dbus or http to do resource state testing
and applying. If the methods are combined, there’s no need to open and close
them twice. A counter argument might be that you could open the connection in
Init, and close it in Close, however you might not want that open for the
full lifetime of the resource if you only change state occasionally.

	Suppose you came up with a really good reason why you wanted the two methods
to be separate. It turns out that the current CheckApply can wrap this easily.
It would look approximately like this:

func (obj *FooRes) CheckApply(apply bool) (bool, error) {
	// my private split implementation of check and apply
	if c, err := obj.check(); err != nil {
		return false, err // we errored
	} else if c {
		return true, nil // state was good!
	}

	if !apply {
		return false, nil // state needs fixing, but apply is false
	}

	err := obj.apply() // errors if failure or unable to apply

	return false, err // always return false, with an optional error
}

Feel free to use this pattern if you’re convinced it’s necessary. Alternatively,
if you think I got the Res API wrong and you have an improvement, please let
us know!

Why do resources have both a Cmp method and an IFF (on the UID) method?

The Cmp() methods are for determining if two resources are effectively the
same, which is used to make graph change delta’s efficient. This is when we want
to change from the current running graph to a new graph, but preserve the common
vertices. Since we want to make this process efficient, we only update the parts
that are different, and leave everything else alone. This Cmp() method can
tell us if two resources are the same. In case it is not obvious, cmp is an
abbrev. for compare.

The IFF() method is part of the whole UID system, which is for discerning if a
resource meets the requirements another expects for an automatic edge. This is
because the automatic edge system assumes a unified UID pattern to test for
equality. In the future it might be helpful or sane to merge the two similar
comparison functions although for now they are separate because they are
actually answer different questions.

What new resource primitives need writing?

There are still many ideas for new resources that haven’t been written yet. If
you’d like to contribute one, please contact us and tell us about your idea!

Is the resource API stable? Does it ever change?

Since we are pre 1.0, the resource API is not guaranteed to be stable, however
it is not expected to change significantly. The last major change kept the
core functionality nearly identical, simplified the implementation of all the
resources, and took about five to ten minutes to port each resource to the new
API. The fundamental logic and behaviour behind the resource API has not changed
since it was initially introduced.

Where can I find more information about mgmt?

Additional blog posts, videos and other material is available! [https://github.com/purpleidea/mgmt/blob/master/docs/on-the-web].

Suggestions

If you have any ideas for API changes or other improvements to resource writing,
please let us know! We’re still pre 1.0 and pre 0.1 and happy to break API in
order to get it right!

Prometheus support

Mgmt comes with a built-in prometheus support. It is disabled by default, and
can be enabled with the --prometheus command line switch.

By default, the prometheus instance will listen on 127.0.0.1:9233 [https://github.com/prometheus/prometheus/wiki/Default-port-allocations]. You
can change this setting by using the --prometheus-listen cli option:

To have mgmt prometheus bind interface on 0.0.0.0:45001, use:
./mgmt r --prometheus --prometheus-listen :45001

Metrics

Mgmt exposes three kinds of resources: go metrics, etcd metrics and mgmt
metrics.

go metrics

We use the prometheus go_collector [https://github.com/prometheus/client_golang/blob/master/prometheus/go_collector.go] to expose go metrics. Those metrics
are mainly useful for debugging and perf testing.

etcd metrics

mgmt exposes etcd metrics. Read more in the upstream documentation [https://coreos.com/etcd/docs/latest/metrics.html]

mgmt metrics

Here is a list of the metrics we provide:

	mgmt_resources_total: The number of resources that mgmt is managing

	mgmt_checkapply_total: The number of CheckApply’s that mgmt has run

	mgmt_failures_total: The number of resources that have failed

	mgmt_failures: The number of resources that have failed

	mgmt_graph_start_time_seconds: Start time of the current graph since unix
epoch in seconds

For each metric, you will get some extra labels:

	kind: The kind of mgmt resource

For mgmt_checkapply_total, those extra labels are set:

	eventful: “true” or “false”, if the CheckApply triggered some changes

	errorful: “true” or “false”, if the CheckApply reported an error

	apply: “true” or “false”, if the CheckApply ran in apply or noop mode

Alerting

You can use prometheus to alert you upon changes or failures. We do not provide
such templates yet, but we plan to provide some examples in this repository.
Patches welcome!

Grafana

We do not have grafana dashboards yet. Patches welcome!

External resources

	prometheus website [https://prometheus.io/]

	prometheus documentation [https://prometheus.io/docs/introduction/overview/]

	prometheus best practices regarding metrics naming [https://prometheus.io/docs/practices/naming/]

	grafana website [http://grafana.org/]

Puppet guide

mgmt can use Puppet as its source for the configuration graph.
This document goes into detail on how this works, and lists
some pitfalls and limitations.

For basic instructions on how to use the Puppet support, see
the main documentation.

Prerequisites

You need Puppet installed in your system. It is not important how you
get it. On the most common Linux distributions, you can use packages
from the OS maintainer, or upstream Puppet repositories. An alternative
that will also work on OSX is the puppet Ruby gem. It also has the
advantage that you can install any desired version in your home directory
or any other location.

Any release of Puppet’s 3.x and 4.x series should be suitable for use with
mgmt. Most importantly, make sure to install the ffrank-mgmtgraph Puppet
module (referred to below as “the translator module”).

puppet module install ffrank-mgmtgraph

Please note that the module is not required on your Puppet master (if you
use a master/agent setup). It’s needed on the machine that runs mgmt.
You can install the module on the master anyway, so that it gets distributed
to your agents through Puppet’s pluginsync mechanism.

Testing the Puppet side

The following command should run successfully and print a YAML hash on your
terminal:

puppet mgmtgraph print --code 'file { "/tmp/mgmt-test": ensure => present }'

You can use this CLI to test any manifests before handing them straight
to mgmt.

Writing a suitable manifest

Unsupported attributes

mgmt inherited its resource module from Puppet, so by and large, it’s quite
possible to express mgmt graphs in terms of Puppet manifests. However,
there isn’t (and likely never will be) full feature parity between the
respective resource types. In consequence, a manifest can have semantics that
cannot be transferred to mgmt.

For example, at the time of writing this, the file type in mgmt had no
notion of permissions (the file mode) yet. This lead to the following
warning (among others that will be discussed below):

$ puppet mgmtgraph print --code 'file { "/tmp/foo": mode => "0600" }'
Warning: cannot translate: File[/tmp/foo] { mode => "600" } (attribute is ignored)

This is a heads-up for the user, because the resulting mgmt graph will
in fact not pass this information to the /tmp/foo file resource, and
mgmt will ignore this file’s permissions. Including such attributes in
manifests that are written expressly for mgmt is not sensible and should
be avoided.

Unsupported resources

Puppet has a fairly large number of
built-in types [https://docs.puppet.com/puppet/latest/reference/type.html],
and countless more are available through
modules [https://forge.puppet.com/]. It’s unlikely that all of them will
eventually receive native counterparts in mgmt.

When encountering an unknown resource, the translator module will replace
it with an exec resource in its output. This resource will run the equivalent
of a puppet resource command to make Puppet apply the original resource
itself. This has quite abysmal performance, because processing such a
resource requires the forking of at least one Puppet process (two if it
is found to be out of sync). This comes with considerable overhead.
On most systems, starting up any Puppet command takes several seconds.
Compared to the split second that the actual work usually takes,
this overhead can amount to several orders of magnitude.

Avoid Puppet types that mgmt does not implement (yet).

Avoiding common warnings

Many resource parameters in Puppet take default values. For the most part,
the translator module just ignores them. However, there are cases in which
Puppet will default to convenient behavior that mgmt cannot quite replicate.
For example, translating a plain file resource will lead to a warning message:

$ puppet mgmtgraph print --code 'file { "/tmp/mgmt-test": }'
Warning: File[/tmp/mgmt-test] uses the 'puppet' file bucket, which mgmt cannot do. There will be no backup copies!

The reason is that per default, Puppet assumes the following parameter value
(among others)

file { "/tmp/mgmt-test":
	backup => 'puppet',
}

To avoid this, specify the parameter explicitly:

puppet mgmtgraph print --code 'file { "/tmp/mgmt-test": backup => false }'

This is tedious in a more complex manifest. A good simplification is the
following resource default [https://docs.puppet.com/puppet/latest/reference/lang_defaults.html]
anywhere on the top scope of your manifest:

File { backup => false }

If you encounter similar warnings from other types and/or parameters,
use the same approach to silence them if possible.

Configuring Puppet

Since mgmt uses an actual Puppet CLI behind the scenes, you might
need to tweak some of Puppet’s runtime options in order to make it
do what you want. Reasons for this could be among the following:

	You use the --puppet agent variant and need to configure
servername, certname and other master/agent-related options.

	You don’t want runtime information to end up in the vardir
that is used by your regular puppet agent.

	You install specific Puppet modules for mgmt in a non-standard
location.

mgmt exposes only one Puppet option in order to allow you to
control all of them, through its --puppet-conf option. It allows
you to specify which puppet.conf file should be used during
translation.

mgmt run puppet --puppet /opt/my-manifest.pp --puppet-conf /etc/mgmt/puppet.conf

Within this file, you can just specify any needed options in the
[main] section:

[main]
server=mgmt-master.example.net
vardir=/var/lib/mgmt/puppet

Caveats

Please see the README [https://github.com/ffrank/puppet-mgmtgraph/blob/master/README]
of the translator module for the current state of supported and unsupported
language features.

You should probably make sure to always use the latest release of
both ffrank-mgmtgraph and ffrank-yamlresource (the latter is
getting pulled in as a dependency of the former).

Using Puppet in conjunction with the mcl lang

The graph that Puppet generates for mgmt can be united with a graph
that is created from native mgmt code in its mcl language. This is
useful when you are in the process of replacing Puppet with mgmt. You
can translate your custom modules into mgmt’s language one by one,
and let mgmt run the current mix.

Instead of the usual --puppet-conf flag and argv for puppet and mcl input,
you need to use alternative flags to make this work:

	--lp-lang to specify the mcl input

	--lp-puppet to specify the puppet input

	--lp-puppet-conf to point to the optional puppet.conf file

mgmt will derive a graph that contains all edges and vertices from
both inputs. You essentially get two unrelated subgraphs that run in
parallel. To form edges between these subgraphs, you have to define
special vertices that will be merged. This works through a hard-coded
naming scheme.

Mixed graph example 1 - No merges

lang
file "/tmp/mgmt_dir/" { state => "present" }
file "/tmp/mgmt_dir/a" { state => "present" }

puppet
file { "/tmp/puppet_dir": ensure => "directory" }
file { "/tmp/puppet_dir/a": ensure => "file" }

These very simple inputs (including implicit edges from directory to
respective file) result in two subgraphs that do not relate.

File[/tmp/mgmt_dir/] -> File[/tmp/mgmt_dir/a]

File[/tmp/puppet_dir] -> File[/tmp/puppet_dir/a]

Mixed graph example 2 - Merged vertex

In order to have merged vertices in the resulting graph, you will
need to include special resources and classes in the respective
input code.

	On the lang side, add noop resources with names starting in puppet_.

	On the Puppet side, add empty classes with names starting in mgmt_.

lang
noop "puppet_handover_to_mgmt" {}
file "/tmp/mgmt_dir/" { state => "present" }
file "/tmp/mgmt_dir/a" { state => "present" }

Noop["puppet_handover_to_mgmt"] -> File["/tmp/mgmt_dir/"]

puppet
class mgmt_handover_to_mgmt {}
include mgmt_handover_to_mgmt

file { "/tmp/puppet_dir": ensure => "directory" }
file { "/tmp/puppet_dir/a": ensure => "file" }

File["/tmp/puppet_dir/a"] -> Class["mgmt_handover_to_mgmt"]

The new noop resource is merged with the new class, resulting in
the following graph:

File[/tmp/puppet_dir] -> File[/tmp/puppet_dir/a]
				|
				V
		Noop[handover_to_mgmt]
			|
			V
	File[/tmp/mgmt_dir/] -> File[/tmp/mgmt_dir/a]

You put all your ducks in a row, and the resources from the Puppet input
run before those from the mcl input.

Note: The names of the noop and the class must be identical after the
respective prefix. The common part (here, handover_to_mgmt) becomes the name
of the merged resource.

Mixed graph example 3 - Multiple merges

In most scenarios, it will not be possible to define a single handover
point like in the previous example. For example, if some Puppet resources
need to run in between two stages of native resources, you need at least
two merged vertices:

lang
noop "puppet_handover" {}
noop "puppet_handback" {}
file "/tmp/mgmt_dir/" { state => "present" }
file "/tmp/mgmt_dir/a" { state => "present" }
file "/tmp/mgmt_dir/puppet_subtree/state-file" { state => "present" }

File["/tmp/mgmt_dir/"] -> Noop["puppet_handover"]
Noop["puppet_handback"] -> File["/tmp/mgmt_dir/puppet_subtree/state-file"]

puppet
class mgmt_handover {}
class mgmt_handback {}

include mgmt_handover, mgmt_handback

class important_stuff {
	file { "/tmp/mgmt_dir/puppet_subtree":
		ensure => "directory"
	}
	# ...
}

Class["mgmt_handover"] -> Class["important_stuff"] -> Class["mgmt_handback"]

The resulting graph looks roughly like this:

File[/tmp/mgmt_dir/] -> File[/tmp/mgmt_dir/a]
	|
	V
Noop[handover] -> (class important_stuff resources)
			|
			V
		Noop[handback]
			|
			V
File[/tmp/mgmt_dir/puppet_subtree/state-file]

You can add arbitrary numbers of merge pairs to your code bases,
with relationships as needed. From our limited experience, code
readability suffers quite a lot from these, however. We advise
to keep these structures simple.

Index

Development

This document contains some additional information and help regarding
developing mgmt. Useful tools, conventions, etc.

Be sure to read quick start guide first.

Vagrant

If you would like to avoid doing the above steps manually, we have prepared a
Vagrant [https://www.vagrantup.com/] environment for your convenience. From the
project directory, run a vagrant up, and then a vagrant status. From there,
you can vagrant ssh into the mgmt machine. The MOTD will explain the rest.
This environment isn’t commonly used by the mgmt developers, so it might not
be working properly.

Using Docker

Alternatively, you can check out the docker-guide in order to
develop or deploy using docker. This method is not endorsed or supported, so use
at your own risk, as it might not be working properly.

Information about dependencies

Software projects have a few different kinds of dependencies. There are build
dependencies, runtime dependencies, and additionally, a few extra dependencies
required for running the test suite.

Build

	golang 1.11 or higher (required, available in some distros and distributed
as a binary officially by golang.org [https://golang.org/dl/])

Runtime

A relatively modern GNU/Linux system should be able to run mgmt without any
problems. Since mgmt runs as a single statically compiled binary, all of the
library dependencies are included. It is expected, that certain advanced
resources require host specific facilities to work. These requirements are
listed below:

Resource	Dependency	Version	Check version with
———-	——————-	—————————–	———————————————————–
augeas	augeas-devel	augeas 1.6 or greater	dnf info augeas-devel or apt-cache show libaugeas-dev
file	inotify	Linux 2.6.27 or greater	uname -a
hostname	systemd-hostnamed	systemd 25 or greater	systemctl --version
nspawn	systemd-nspawn	systemd ??? or greater	systemctl --version
pkg	packagekitd	packagekit 1.x or greater	pkcon --version
svc	systemd	systemd ??? or greater	systemctl --version
virt	libvirt-devel	libvirt 1.2.0 or greater	dnf info libvirt-devel or apt-cache show libvirt-dev
virt	libvirtd	libvirt 1.2.0 or greater	libvirtd --version

For building a visual representation of the graph, graphviz is required.

To build mgmt without augeas support please run:
GOTAGS='noaugeas' make build

To build mgmt without libvirt support please run:
GOTAGS='novirt' make build

To build mgmt without docker support please run:
GOTAGS='nodocker' make build

To build mgmt without augeas, libvirt or docker support please run:
GOTAGS='noaugeas novirt nodocker' make build

OSX/macOS/Darwin development

Developing and running mgmt on macOS is currently not supported (but not
discouraged either). Meaning it might work but in the case it doesn’t you would
have to provide your own patches to fix problems (the project maintainer and
community are glad to assist where needed).

There are currently some issues that make mgmt less suitable to run for
provisioning macOS. But as a client to provision remote servers it should run
fine.

Since the primary supported systems are Linux and these are the environments
tested, it is wise to run these suites during macOS development as well. To ease
this, Docker can be leveraged (Docker for Mac [https://docs.docker.com/docker-for-mac/]).

Before running any of the commands below create the development Docker image:

docker/scripts/build-development

This image requires updating every time dependencies (make-deps.sh) changes.

Then to run the test suite:

docker run --rm -ti \
	-v $PWD:/go/src/github.com/purpleidea/mgmt/ \
	-w /go/src/github.com/purpleidea/mgmt/ \
	purpleidea/mgmt:development \
	make test

For convenience this command is wrapped in docker/scripts/exec-development.

Basically any command can be executed this way. Because the repository source is
mounted into the Docker container invocation will be quick and allow rapid
testing, for example:

docker/scripts/exec-development test/test-shell.sh load0.sh

Other examples:

docker/scripts/exec-development make build
docker/scripts/exec-development ./mgmt run --tmp-prefix lang examples/lang/load0.mcl

Be advised that this method is not supported and it might not be working
properly.

Testing

This project has both unit tests in the form of golang tests and integration
tests using shell scripting.

Native golang tests are preferred over tests written in our shell testing
framework. Please see https://golang.org/pkg/testing/
for more information.

To run all tests:

make test

There is a library of quick and small integration tests for the language and
YAML related things, check out test/shell/. Adding a test is as
easy as copying one of the files in test/shell/ and adapting
it.

This test suite won’t run by default (unless when on CI server) and needs to be
called explictly using:

make test-shell

Or run an individual shell test using:

make test-shell-load0

Tip: you can use TAB completion with make to quickly get a list of possible
individual tests to run.

Tools, integrations, IDE’s etc

IDE/Editor support

	Emacs: see misc/emacs/

	Textmate [https://github.com/aequitas/mgmt.tmbundle]

	VSCode [https://github.com/aequitas/mgmt.vscode]

Frequently asked questions

(Send your questions as a patch to this FAQ! I’ll review it, merge it, and
respond by commit with the answer.)

Why did you start this project?

I wanted a next generation config management solution that didn’t have all of
the design flaws or limitations that the current generation of tools do, and no
tool existed!

Why did you choose golang for the project?

When I started working on the project, I needed to choose a language that
already had an implementation of a distributed consensus algorithm available.
That meant Paxos [https://en.wikipedia.org/wiki/Paxos_(computer_science)] or
Raft [https://en.wikipedia.org/wiki/Raft_(computer_science)]. Golang was one
language that actually had two different Raft implementations, etcd, and
consul. Other design requirements included something that was reasonably fast,
typed and memory-safe, and suited for systems engineering. After a reasonably
extensive search, I chose golang. I think it was the right decision. There are
a number of other features of the language which helped influence the decision.

How do I contribute to the project if I don’t know golang?

There are many different ways you can contribute to the project. They can be
broadly divided into two main categories:

	With contributions written in golang

	With contributions not written in golang

If you do not know golang, and have no desire to learn, you can still
contribute to mgmt by using it, testing it, writing docs, or even just by
telling your friends about it. If you don’t mind some coding, learning about the
mgmt language [https://purpleidea.com/blog/2018/02/05/mgmt-configuration-language/]
might be an enjoyable experience for you. It is a small DSL [https://en.wikipedia.org/wiki/Domain-specific_language]
and not a general purpose programming language, and you might find it more fun
than what you’re typically used to. One of the reasons the mgmt author got into
writing automation modules, was because he found it much more fun to build with
a higher level DSL, than in a general purpose programming language.

If you do not know golang, and would like to learn, are a beginner and want to
improve your skills, or want to gain some great interdisciplinary systems
engineering knowledge around a cool automation project, we’re happy to mentor
you. Here are some pre-requisites steps which we recommend:

	Make sure you have a somewhat recent GNU/Linux environment to hack on. A
recent Fedora [https://getfedora.org/] or Debian [https://www.debian.org/]
environment is recommended. Developing, testing, and contributing on macOS or
Windows will be either more difficult or impossible.

	Ensure that you’re mildly comfortable with the basics of using git. You can
find a number of tutorials online.

	Spend between four to six hours with the golang tour [https://tour.golang.org/].
Skip over the longer problems, but try and get a solid overview of everything.
If you forget something, you can always go back and repeat those parts.

	Connect to our #mgmtconfig [https://webchat.freenode.net/?channels=#mgmtconfig]
IRC channel on the Freenode [https://freenode.net/] network. You can use any
IRC client that you’d like, but the hosted web portal [https://webchat.freenode.net/?channels=#mgmtconfig]
will suffice if you don’t know what else to use.

	Now it’s time to try and starting writing a patch! We have tagged a bunch of
open issues as #mgmtlove [https://github.com/purpleidea/mgmt/issues?q=is%3Aissue+is%3Aopen+label%3Amgmtlove]
for new users to have somewhere to get involved. Look through them to see if
something interests you. If you find one, let us know you’re working on it by
leaving a comment in the ticket. We’ll be around to answer questions in the IRC
channel, and to create new issues if there wasn’t something that fit your
interests. When you submit a patch, we’ll review it and give you some feedback.
Over time, we hope you’ll learn a lot while supporting the project! Now get
hacking!

Is this project ready for production?

It’s getting pretty close. I’m able to write modules for it now!

Compared to some existing automation tools out there, mgmt is a relatively new
project. It is probably not as feature complete as some other software, but it
also offers a number of features which are not currently available elsewhere.

Because we have not released a 1.0 release yet, we are not guaranteeing
stability of the internal or external API’s. We only change them if it’s really
necessary, and we don’t expect anything particularly drastic to occur. We would
expect it to be relatively easy to adapt your code if such changes happened.

As with all software, bugs can occur, and while we make no guarantees of being
bug-free, there are a number of things we’ve done to reduce the chances of one
causing you trouble:

	Our software is written in golang, which is a memory-safe language, and which
is known to reduce or eliminate entire classes of bugs.

	We have a test suite which we run on every commit, and every 24 hours. If you
have a particular case that you’d like to test, you are welcome to add it in!

	The mgmt language itself offers a number of safety features. You can
read about them in the introductory blog post [https://purpleidea.com/blog/2018/02/05/mgmt-configuration-language/].

Having said all this, as with all software, there are still missing features
which some users might want in their production environments. We’re working hard
to get all of those implemented, but we hope that you’ll get involved and help
us finish off the ones that are most important to you. We are happy to mentor
new contributors, and have even tagged [https://github.com/purpleidea/mgmt/issues?q=is%3Aissue+is%3Aopen+label%3Amgmtlove]
a number of issues if you need help getting started.

Some of the current limitations include:

	Auth hasn’t been implemented yet, so you should only use it in trusted
environments (not on publicly accessible networks) for now.

	The number of built-in core functions is still small. You may encounter
scenarios where you’re missing a function. The good news is that it’s relatively
easy to add this missing functionality yourself. In time, with your help, the
list will grow!

	Large file distribution is not yet implemented. You might want a scenario
where mgmt is used to distribute large files (such as .iso images) throughout
your cluster. While this isn’t a common use-case, it won’t be possible until
someone wants to write the patch. (Mentoring available!) You can workaround this
easily by storing those files on a separate fileserver for the interim.

	There isn’t an ecosystem of community modules yet. We’ve got this on our
roadmap, so please stay tuned!

We hope you’ll participate as an early adopter. Every additional pair of helping
hands gets us all there faster! It’s quite possible to use this to build useful
automation today, and we hope you’ll start getting familiar with the software.

Why did you use etcd? What about consul?

Etcd and consul are both written in golang, which made them the top two
contenders for my prototype. Ultimately a choice had to be made, and etcd was
chosen, but it was also somewhat arbitrary. If there is available interest,
good reasoning, and patches, then we would consider either switching or
supporting both, but this is not a high priority at this time.

Can I use an existing etcd cluster instead of the automatic embedded servers?

Yes, it’s possible to use an existing etcd cluster instead of the automatic,
elastic embedded etcd servers. To do so, simply point to the cluster with the
--seeds variable, the same way you would if you were seeding a new member to
an existing mgmt cluster.

The downside to this approach is that you won’t benefit from the automatic
elastic nature of the embedded etcd servers, and that you’re responsible if you
accidentally break your etcd cluster, or if you use an unsupported version.

In mgmt you talk about events. What is this referring to?

Mgmt has two main concepts that involve “events”:

	Events in the resource primitive.

	Events in the reactive language.

Each resource primitive in mgmt can test (check) and set (apply) the desired
state that was requested of it. This is familiar to what is common with existing
tools such as Puppet, Ansible, Chef, Terraform, etc… In addition,
mgmt can also watch the state and detect changes. As a result, it never
has to waste time and cpu resources by polling to test and set state, leading to
a design which is algorithmically much faster than the existing generation of
tools.

To describe the set of resources to apply, mgmt describes this collection with a
language. In order to model the time component of infrastructure, we use a
special kind of language called an FRP [https://en.wikipedia.org/wiki/Functional_reactive_programming].
This language has a built-in concept that we call “events”, and which means that
we re-evaluate the relevant portions of the code whenever a value or function
has an event that tells us that it changed. The R in FRP stands for
reactive. This is similar to how a spreadsheet updates dependent cells when a
pre-requisite value is modified. This article [https://en.wikipedia.org/wiki/Reactive_programming]
provides a bit more background.

Whenever any of the streams of values in the language change, the program is
partially re-evaluated. The output of any mgmt program is a DAG [https://en.wikipedia.org/wiki/Directed_acyclic_graph]
of resources, or more precisely, a stream of resource graphs. Since we have
events per-resource, we can efficiently switch from one desired-state resource
graph to the next without re-checking their individual states, since we’ve been
monitoring them all along.

One side-effect of all this, is that if a rogue systems administrator manually
changes the state of any managed resource, mgmt will detect this and attempt to
revert the change. This makes for excellent live demos, but is not the primary
design goal. It is a consequence of tracking state so that graph changes are
efficient. We implement the event detection via an intentional per-resource
main loop [https://en.wikipedia.org/wiki/Event_loop] which can enable other
interesting functionality too!

Make sure to get rid of your rogue sysadmin! ;)

Do I need to run mgmt as root?

No and yes. It depends. Nothing in mgmt explicitly requires root in the design,
however mgmt will require root only if the changes to your system that you want
it to make require root.

For example, if you use it to manage files that require root access to modify,
then you’ll need root. If you only use it to manage files and resources
elsewhere, then it shouldn’t need root. Many resources are perfectly usable
without root, and virtually all of my live demos are done without root.

How can I run mgmt on-demand, or in cron, instead of continuously?

By default, mgmt will run continuously in an attempt to keep your machine in a
converged state, even as external forces change the current state, or as your
time-varying desired state changes over time. (You can write code in the mgmt
language which will let you describe a desired state which might change over
time.)

Some users might prefer to only run mgmt on-demand manually, or at a set
interval via a tool like cron. In order to do so, mgmt must have a way to
shut itself down after a single “run”. This feature is possible with the
--converged-timeout flag. You may specify this flag, along with a number of
seconds as the argument, and when there has been no activity for that many
seconds, the program will shutdown.

Alternatively, while it is not recommended, if you’d like to ensure the program
never runs for longer that a specific number of seconds, you can ask it to
shutdown after that time interval using the --max-runtime flag. This also
requires a number of seconds as an argument.

Example:

./mgmt run lang examples/lang/hello0.mcl --converged-timeout=5

When I try to build mgmt I see: no Go files in $GOPATH/src/github.com/purpleidea/mgmt/bindata.

Due to the arcane way that golang designed its $GOPATH, the main project
directory must be inside your $GOPATH, and at the appropriate FQDN. This is:
$GOPATH/src/github.com/purpleidea/mgmt/. If you have your project root outside
of that directory, then you may get this error when you try to build it. In this
case there is likely a go get version of the project at this location. Remove
it and replace it with your git cloned directory. In my case, I like to work on
things in ~/code/mgmt/, so that path is a symlink that points to the long
project directory.

Why does my file resource error with no such file or directory?

If you create a file resource and only specify the content like this:

file "/tmp/foo" {
	content => "hello world\n",
}

Then this will attempt to set the contents of that file to the desired string,
but only if that file already exists. If you’d like to ensure that it also
gets created in case it is not present, then you must also specify the state:

file "/tmp/foo" {
	state => "exists",
	content => "hello world\n",
}

Similar logic applies for situations when you only specify the mode parameter.

This all turns out to be more safe and “correct”, in that it would error and
prevent masking an error for a situation when you expected a file to already be
at that location. It also turns out to simplify the internals significantly, and
remove an ambiguous scenario with the reversable file resource.

On startup mgmt hangs after: etcd: server: starting....

If you get an error message similar to:

etcd: server: starting...
etcd: server: start timeout of 1m0s reached
etcd: server: close timeout of 15s reached

But nothing happens afterwards, this can be due to a corrupt etcd storage
directory. Each etcd server embedded in mgmt must have a special directory where
it stores local state. It must not be shared by more than one individual member.
This dir is typically /var/lib/mgmt/etcd/member/. If you accidentally use it
(for example during testing) with a different cluster view, then you can corrupt
it. This can happen if you use it with more than one different hostname.

The solution is to avoid making this mistake, and if there is no important data
saved, you can remove the etcd member dir and start over.

On running make to build a new version, it errors with: Text file busy.

If you get an error like:

cp: cannot create regular file 'mgmt': Text file busy

This can happen if you ran make build (or just make) when there was already
an instance of mgmt running, or if a related file locking issue occurred. To
solve this, shutdown and running mgmt process, run rm mgmt to remove the file,
and then get a new one by running make again.

Does this support Windows? OSX? GNU Hurd?

Mgmt probably works best on Linux, because that’s what most developers use for
serious automation workloads. Support for non-Linux operating systems isn’t a
high priority of mine, but we’re happy to accept patches for missing features
or resources that you think would make sense on your favourite platform.

Why aren’t you using glide, godep or go mod for dependency management?

Vendoring dependencies means that as the git master branch of each dependency
marches on, you’re left behind using an old version. As a result, bug fixes and
improvements are not automatically brought into the project. Instead, we run our
complete test suite against the entire project (with the latest dependencies)
every 24 hours [https://docs.travis-ci.com/user/cron-jobs/] to ensure that it
all still works.

Occasionally a dependency breaks API and causes a failure. In those situations,
we’re notified almost immediately, it’s easy to see exactly which commit caused
the breakage, and we can either quickly notify the author (if it was a mistake)
or update our code if it was a sensible change. This also puts less burden on
authors to support old, legacy versions of their software unnecessarily.

Historically, we’ve had approximately one such breakage per year, which were all
detected and fixed within a few hours. The cost of these small, rare,
interruptions is much less expensive than having to periodically move every
dependency in the project to the latest versions. Some examples of this include:

	We caught the go-bindata swap before it was publicly known, and fixed it in:
adbe9c7be178898de3645b0ed17ed2ca06646017 [https://github.com/purpleidea/mgmt/commit/adbe9c7be178898de3645b0ed17ed2ca06646017].

	We caught the codegangsta/cli API change improvement, and fixed it in:
ab73261fd4e98cf7ecb08066ad228a8f559ba16a [https://github.com/purpleidea/mgmt/commit/ab73261fd4e98cf7ecb08066ad228a8f559ba16a].

	We caught an un-announced libvirt API change, and promptly fixed it in:
95cb94a03958a9d2ebf01df0821a8c13a4f3a28c [https://github.com/purpleidea/mgmt/commit/95cb94a03958a9d2ebf01df0821a8c13a4f3a28c].

If we choose responsible dependencies, then it usually means that those authors
are also responsible with their changes to API and to git master. If we ever
find that it’s not the case, then we will either switch that dependency to a
more responsible version, or fork it if necessary.

Occasionally, we want to pin a dependency to a particular version. This can
happen if the project treats git master as an unstable branch, or because a
dependency needs a newer version of golang than the minimum that we require for
our project. In those cases it’s sensible to assume the technical debt, and
vendor the dependency. The common tools such as glide and godep work by
requiring you install their software, and by either storing a yaml file with the
version of that dependency in your repository, and/or copying all of that code
into git and explicitly storing it. This project thinks that all of these
solutions are wasteful and unnecessary, particularly when an existing elegant
solution already exists: [git submodules](https://git-scm.com/book/en/v2/Git-Tools-Submodules).

The advantages of using git submodules are three-fold:

	You already have the required tools installed.

	You only store a pointer to the dependency, not additional files or code.

	The git submodule tools let you easily switch dependency versions, see diff
output, and responsibly plan and test your versions bumps with ease.

Don’t blindly use the tools that others tell you to. Learn what they do, think
for yourself, and become a power user today! That process led us to using
git submodules. Hopefully you’ll come to the same conclusions that we did.

Did you know that there is a band named MGMT?

I didn’t realize this when naming the project, and it is accidental. After much
anguishing, I chose the name because it was short and I thought it was
appropriately descriptive. If you need a less ambiguous search term or phrase,
you can try using mgmtconfig or mgmt config.

It also doesn’t stand for
Methyl Guanine Methyl Transferase [https://en.wikipedia.org/wiki/O-6-methylguanine-DNA_methyltransferase]
which definitely existed before the band did.

You didn’t answer my question, or I have a question!

It’s best to ask on IRC [https://webchat.freenode.net/?channels=#mgmtconfig]
to see if someone can help you. If you don’t get a response from IRC, you can
contact me through my technical blog [https://purpleidea.com/contact/] and I’ll
do my best to help. If you have a good question, please add it as a patch to
this documentation. I’ll merge your question, and add a patch with the answer!
For news and updates, subscribe to the mailing list [https://www.redhat.com/mailman/listinfo/mgmtconfig-list].

Function guide

Overview

The mgmt tool has built-in functions which add useful, reactive functionality
to the language. This guide describes the different function API’s that are
available. It is meant to instruct developers on how to write new functions.
Since mgmt and the core functions are written in golang, some prior golang
knowledge is assumed.

Theory

Functions in mgmt are similar to functions in other languages, however they
also have a reactive [https://en.wikipedia.org/wiki/Functional_reactive_programming]
component. Our functions can produce events over time, and there are different
ways to write functions. For some background on this design, please read the
original article [https://purpleidea.com/blog/2018/02/05/mgmt-configuration-language/]
on the subject.

Native Functions

Native functions are functions which are implemented in the mgmt language
itself. These are currently not available yet, but are coming soon. Stay tuned!

Simple Function API

Most functions should be implemented using the simple function API. This API
allows you to implement simple, static, pure [https://en.wikipedia.org/wiki/Pure_function]
functions that don’t require you to write much boilerplate code. They will be
automatically re-evaluated as needed when their input values change. These will
all be automatically made available as helper functions within mgmt templates,
and are also available for use anywhere inside mgmt programs.

You’ll need some basic knowledge of using the types [https://github.com/purpleidea/mgmt/tree/master/lang/types]
library which is included with mgmt. This library lets you interact with the
available types and values in the mgmt language. It is very easy to use, and
should be fairly intuitive. Most of what you’ll need to know can be inferred
from looking at example code.

To implement a function, you’ll need to create a file in
lang/funcs/simple/ [https://github.com/purpleidea/mgmt/tree/master/lang/funcs/simple/].
The function should be implemented as a FuncValue in our type system. It is
then registered with the engine during init(). An example explains it best:

Example

package simple

import (
	"fmt"

	"github.com/purpleidea/mgmt/lang/types"
)

// you must register your functions in init when the program starts up
func init() {
	// Example function that squares an int and prints out answer as an str.
	Register("talkingsquare", &types.FuncValue{
		T: types.NewType("func(a int) str"), // declare the signature
		V: func(input []types.Value) (types.Value, error) {
			i := input[0].Int() // get first arg as an int64
			// must return the above specified value
			return &types.StrValue{
				V: fmt.Sprintf("%d^2 is %d", i, i * i),
			}, nil // no serious errors occurred
		},
	})
}

This simple function accepts one int as input, and returns one str.
Functions can have zero or more inputs, and must have exactly one output. You
must be sure to use the types library correctly, since if you try and access
an input which should not exist (eg: input[2], when there are only two
that are expected), then you will cause a panic. If you have declared that a
particular argument is an int but you try to read it with .Bool() you will
also cause a panic. Lastly, make sure that you return a value in the correct
type or you will also cause a panic!

If anything goes wrong, you can return an error, however this will cause the
mgmt engine to shutdown. It should be seen as the equivalent to calling a
panic(), however it is safer because it brings the engine down cleanly.
Ideally, your functions should never need to error. You should never cause a
real panic(), since this could have negative consequences to the system.

Simple Polymorphic Function API

Most functions should be implemented using the simple function API. If they need
to have multiple polymorphic forms under the same name, then you can use this
API. This is useful for situations when it would be unhelpful to name the
functions differently, or when the number of possible signatures for the
function would be infinite.

The canonical example of this is the len function which returns the number of
elements in either a list or a map. Since lists and maps are two different
types, you can see that polymorphism is more convenient than requiring a
listlen and maplen function. Nevertheless, it is also required because a
list of int is a different type than a list of str, which is a different
type than a list of list of str and so on. As you can see the number of
possible input types for such a len function is infinite.

Another downside to implementing your functions with this API is that they will
not be made available for use inside templates. This is a limitation of the
golang template library. In the future if this limitation proves to be
significantly annoying, we might consider writing our own template library.

As with the simple, non-polymorphic API, you can only implement pure [https://en.wikipedia.org/wiki/Pure_function]
functions, without writing too much boilerplate code. They will be automatically
re-evaluated as needed when their input values change.

To implement a function, you’ll need to create a file in
lang/funcs/simplepoly/ [https://github.com/purpleidea/mgmt/tree/master/lang/funcs/simplepoly/].
The function should be implemented as a list of FuncValue’s in our type
system. It is then registered with the engine during init(). You may also use
the variant type in your type definitions. This special type will never be
seen inside a running program, and will get converted to a concrete type if a
suitable match to this signature can be found. Be warned that signatures which
contain too many variants, or which are very general, might be hard for the
compiler to match, and ambiguous type graphs make for user compiler errors.

An example explains it best:

Example

import (
	"fmt"

	"github.com/purpleidea/mgmt/lang/types"
	"github.com/purpleidea/mgmt/lang/funcs/simplepoly"
)

func init() {
	simplepoly.Register("len", []*types.FuncValue{
		{
			T: types.NewType("func([]variant) int"),
			V: Len,
		},
		{
			T: types.NewType("func({variant: variant}) int"),
			V: Len,
		},
	})
}

// Len returns the number of elements in a list or the number of key pairs in a
// map. It can operate on either of these types.
func Len(input []types.Value) (types.Value, error) {
	var length int
	switch k := input[0].Type().Kind; k {
	case types.KindList:
		length = len(input[0].List())
	case types.KindMap:
		length = len(input[0].Map())

	default:
		return nil, fmt.Errorf("unsupported kind: %+v", k)
	}

	return &types.IntValue{
		V: int64(length),
	}, nil
}

This simple polymorphic function can accept an infinite number of signatures, of
which there are two basic forms. Both forms return an int as is seen above.
The first form takes a []variant which means a list of variant’s, which
means that it can be a list of any type, since variant itself is not a
concrete type. The second form accepts a {variant: variant}, which means that
it accepts any form of map as input.

The implementation for both of these forms is the same: it is handled by the
same Len function which is clever enough to be able to deal with any of the
type signatures possible from those two patterns.

At compile time, if your mcl code type checks correctly, a concrete type will
be known for each and every usage of the len function, and specific values
will be passed in for this code to compute the length of. As usual, make sure to
only write safe code that will not panic! A panic is a bug. If you really cannot
continue, then you must return an error.

Function API

To implement a reactive function in mgmt it must satisfy the
Func [https://github.com/purpleidea/mgmt/blob/master/lang/interfaces/func.go]
interface. Using the Simple Function API is preferable
if it meets your needs. Most functions will be able to use that API. If you
really need something more powerful, then you can use the regular function API.
What follows are each of the method signatures and a description of each.

Default

Info() *interfaces.Info

This returns some information about the function. It is necessary so that the
compiler can type check the code correctly, and know what optimizations can be
performed. This is usually the first method which is called by the engine.

Example

func (obj *FooFunc) Info() *interfaces.Info {
	return &interfaces.Info{
		Pure: true,
		Sig: types.NewType("func(a int) str"),
	}
}

Init

Init(init *interfaces.Init) error

This is called to initialize the function. If something goes wrong, it should
return an error. It is passed a struct that contains all the important
information and pointers that it might need to work with throughout its
lifetime. As a result, it will need to save a copy to that pointer for future
use in the other methods.

Example

// Init runs some startup code for this function.
func (obj *FooFunc) Init(init *interfaces.Init) error {
	obj.init = init
	obj.closeChan = make(chan struct{}) // shutdown signal
	return nil
}

Close

Close() error

This is called to cleanup the function. It usually causes the stream to
shutdown. Even if Stream() decided to shutdown early, it might still get
called. It is usually called by the engine to tell the function to shutdown.

Example

// Close runs some shutdown code for this function and turns off the stream.
func (obj *FooFunc) Close() error {
	close(obj.closeChan) // send a signal to tell the stream to close
	return nil
}

Stream

Stream() error

Stream is where the real work is done. This method is started by the
language function engine. It will run this function while simultaneously sending
it values on the input channel. It will only send a complete set of input
values. You should send a value to the output channel when you have decided that
one should be produced. Make sure to only use input values of the expected type
as declared in the Info struct, and send values of the similarly declared
appropriate return type. Failure to do so will may result in a panic and
sadness.

Example

// Stream returns the single value that was generated and then closes.
func (obj *FooFunc) Stream() error {
	defer close(obj.init.Output) // the sender closes
	var result string
	for {
		select {
		case input, ok := <-obj.init.Input:
			if !ok {
				return nil // can't output any more
			}

			ix := input.Struct()["a"].Int()
			if ix < 0 {
				return fmt.Errorf("we can't deal with negatives")
			}

			result = fmt.Sprintf("the input is: %d", ix)

		case <-obj.closeChan:
			return nil
		}

		select {
		case obj.init.Output <- &types.StrValue{
			V: result,
		}:

		case <-obj.closeChan:
			return nil
		}
	}
}

As you can see, we read our inputs from the input channel, and write to the
output channel. Our code is careful to never block or deadlock, and can always
exit if a close signal is requested. It also cleans up after itself by closing
the output channel when it is done using it. This is done easily with defer.
If it notices that the input channel closes, then it knows that no more input
values are coming and it can consider shutting down early.

Further considerations

There is some additional information that any function author will need to know.
Each issue is listed separately below!

Function struct

Each function will implement methods as pointer receivers on a function struct.
The naming convention for resources is that they end with a Func suffix.

Example

type FooFunc struct {
	init *interfaces.Init

	// this space can be used if needed

	closeChan chan struct{} // shutdown signal
}

Function registration

All functions must be registered with the engine so that they can be found. This
also ensures they can be encoded and decoded. Make sure to include the following
code snippet for this to work.

import "github.com/purpleidea/mgmt/lang/funcs"

func init() { // special golang method that runs once
	funcs.Register("foo", func() interfaces.Func { return &FooFunc{} })
}

Functions inside of built-in modules will need to use the ModuleRegister
method instead.

// moduleName is already set to "math" by the math package. Do this in `init`.
funcs.ModuleRegister(moduleName, "cos", func() interfaces.Func { return &CosFunc{} })

Composite functions

Composite functions are functions which import one or more existing functions.
This is useful to prevent code duplication in higher level function scenarios.
Unfortunately no further documentation about this subject has been written. To
expand this section, please send a patch! Please contact us if you’d like to
work on a function that uses this feature, or to add it to an existing one!
We don’t expect this functionality to be particularly useful or common, as it’s
probably easier and preferable to simply import common golang library code into
multiple different functions instead.

Polymorphic Function API

The polymorphic function API is an API that lets you implement functions which
do not necessarily have a single static function signature. After compile time,
all functions must have a static function signature. We also know that there
might be different ways you would want to call printf, such as:
printf("the %s is %d", "answer", 42) or printf("3 * 2 = %d", 3 * 2). Since
you couldn’t implement the infinite number of possible signatures, this API lets
you write code which can be coerced into different forms. This makes
implementing what would appear to be generic or polymorphic, instead of
something that is actually static and that still has the static type safety
properties that were guaranteed by the mgmt language.

Since this is an advanced topic, it is not described in full at this time. For
more information please have a look at the source code comments, some of the
existing implementations, and ask around in the community.

Frequently asked questions

(Send your questions as a patch to this FAQ! I’ll review it, merge it, and
respond by commit with the answer.)

Can I use global variables?

Probably not. You must assume that multiple copies of your function may be used
at the same time. If they require a global variable, it’s likely this won’t
work. Instead it’s probably better to use a struct local variable if you need to
store some state.

There might be some rare instances where a global would be acceptable, but if
you need one of these, you’re probably already an internals expert. If you think
they need to lock or synchronize so as to not overwhelm an external resource,
then you have to be especially careful not to cause deadlocking the mgmt engine.

Can I write functions in a different language?

Currently golang is the only supported language for built-in functions. We
might consider allowing external functions to be imported in the future. This
will likely require a language that can expose a C-like API, such as python or
ruby. Custom golang functions are already possible when using mgmt as a lib.

What new functions need writing?

There are still many ideas for new functions that haven’t been written yet. If
you’d like to contribute one, please contact us and tell us about your idea!

Can I generate many different FuncValue implementations from one function?

Yes, you can use a function generator in golang to build multiple different
implementations from the same function generator. You just need to implement a
function which returns a golang type of func([]types.Value) (types.Value, error)
which is what FuncValue expects. The generator function can use any input it
wants to build the individual functions, thus helping with code re-use.

How do I determine the signature of my simple, polymorphic function?

The determination of the input portion of the function signature can be
determined by inspecting the length of the input, and the specific type each
value has. Length is done in the standard golang way, and the type of each
element can be ascertained with the Type() method available on every value.

Knowing the output type is trickier. If it can not be inferred in some manner,
then the only way is to keep track of this yourself. You can use a function
generator to build your FuncValue implementations, and pass in the unique
signature to each one as you are building them. Using a generator is a common
technique which was mentioned previously.

Where can I find more information about mgmt?

Additional blog posts, videos and other material is available! [https://github.com/purpleidea/mgmt/blob/master/docs/on-the-web].

Suggestions

If you have any ideas for API changes or other improvements to function writing,
please let us know! We’re still pre 1.0 and pre 0.1 and happy to break API in
order to get it right!

Language guide

Overview

The mgmt tool has various frontends, each of which may produce a stream of
between zero or more graphs that are passed to the engine for desired state
application. In almost all scenarios, you’re going to want to use the language
frontend. This guide describes some of the internals of the language.

Theory

The mgmt language is a declarative (immutable) functional, reactive programming
language. It is implemented in golang. A longer introduction to the language
is available as a blog post here [https://purpleidea.com/blog/2018/02/05/mgmt-configuration-language/]!

Types

All expressions must have a type. A composite type such as a list of strings
([]str) is different from a list of integers ([]int).

There is a variant type in the language’s type system, but it is only used
internally and only appears briefly when needed for type unification hints
during static polymorphic function generation. This is an advanced topic which
is not required for normal usage of the software.

The implementation of the internal types can be found in
lang/types/ [https://github.com/purpleidea/mgmt/tree/master/lang/types/].

bool

A true or false value.

str

Any "string!" enclosed in quotes.

int

A number like 42 or -13. Integers are represented internally as golang’s
int64.

float

A floating point number like: 3.1415926. Float’s are represented internally as
golang’s float64.

list

An ordered collection of values of the same type, eg: [6, 7, 8, 9,]. It is
worth mentioning that empty lists have a type, although without type hints it
can be impossible to infer the item’s type.

map

An unordered set of unique keys of the same type and corresponding value pairs
of another type, eg:
{"boiling" => 100, "freezing" => 0, "room" => "25", "house" => 22, "canada" => -30,}.
That is to say, all of the keys must have the same type, and all of the values
must have the same type. You can use any type for either, although it is
probably advisable to avoid using very complex types as map keys.

struct

An ordered set of field names and corresponding values, each of their own type,
eg: struct{answer => "42", james => "awesome", is_mgmt_awesome => true,}.
These are useful for combining more than one type into the same value. Note the
syntactical difference between these and map’s: the key’s in map’s have types,
and as a result, string keys are enclosed in quotes, whereas struct fields are
not string values, and as such are bare and specified without quotes.

func

An ordered set of optionally named, differently typed input arguments, and a
return type, eg: func(s str) int or:
func(bool, []str, {str: float}) struct{foo str; bar int}.

Expressions

Expressions, and the Expr interface need to be better documented. For now
please consume
lang/interfaces/ast.go [https://github.com/purpleidea/mgmt/tree/master/lang/interfaces/ast.go].
These docs will be expanded on when things are more certain to be stable.

Statements

There are a very small number of statements in our language. They include:

	bind: bind’s an expression to a variable within that scope without output

	eg: $x = 42

	if: produces up to one branch of statements based on a conditional
expression

if <conditional> {
	<statements>
} else {
	# the else branch is optional for if statements
	<statements>
}

	resource: produces a resource

file "/tmp/hello" {
	content => "world",
	mode => "o=rwx",
}

	edge: produces an edge

File["/tmp/hello"] -> Print["alert4"]

	class: bind’s a list of statements to a class name in scope without output

class foo {
	# some statements go here
}

or

class bar($a, $b) { # a parameterized class
	# some statements go here
}

	include: include a particular class at this location producing output

include foo

include bar("hello", 42)
include bar("world", 13) # an include can be called multiple times

	import: import a particular scope from this location at a given namespace

a system module import
import "fmt"

a local, single file import (relative path, not a module)
import "dir1/file.mcl"

a local, module import (relative path, contents are a module)
import "dir2/"

a remote module import (absolute remote path, contents are a module)
import "git://github.com/purpleidea/mgmt-example1/"

or

import "fmt" as *	# contents namespaced into top-level names
import "foo.mcl"	# namespaced as foo
import "dir1/" as bar	# namespaced as bar
import "git://github.com/purpleidea/mgmt-example1/"	# namespaced as example1

All statements produce output. Output consists of between zero and more
edges and resources. A resource statement can produce a resource, whereas an
if statement produces whatever the chosen branch produces. Ultimately the goal
of executing our programs is to produce a list of resources, which along with
the produced edges, is built into a resource graph. This graph is then passed
to the engine for desired state application.

Bind

This section needs better documentation.

If

This section needs better documentation.

Resource

Resources express the idempotent workloads that we want to have apply on our
system. They correspond to vertices in a graph [https://en.wikipedia.org/wiki/Directed_acyclic_graph]
which represent the order in which their declared state is applied. You will
usually want to pass in a number of parameters and associated values to the
resource to control how it behaves. For example, setting the content parameter
of a file resource to the string hello, will cause the contents of that file
to contain the string hello after it has run.

Undefined parameters

For some parameters, there is a distinction between an unspecified parameter,
and a parameter with a zero value. For example, for the file resource, you
might choose to set the content parameter to be the empty string, which would
ensure that the file has a length of zero. Alternatively you might wish to not
specify the file contents at all, which would leave that property undefined. If
you omit listing a property, then it will be undefined. To control this property
programmatically, you need to specify an is-defined value, as well as the
value to use if that boolean is true. You can do this with the resource-specific
elvis operator.

$b = true # change me to false and then try editing the file manually
file "/tmp/mgmt-elvis" {
	content => $b ?: "hello world\n",
	state => "exists",
}

This example is static, however you can imagine that the $b value might be
chosen in a programmatic way, even one in which that value varies over time. If
it evaluates to true, then the parameter will be used. If no elvis operator
is specified, then the parameter value will also be used. If the parameter is
not specified, then it will obviously not be used.

Meta parameters

Resources may specify meta parameters. To do so, you must add them as you would
a regular parameter, except that they start with Meta and are capitalized. Eg:

file "/tmp/f1" {
	content => "hello!\n",

	Meta:noop => true,
	Meta:delay => $b ?: 42,
	Meta:autoedge => false,
}

As you can see, they also support the elvis operator, and you can add as many as
you like. While it is not recommended to add the same meta parameter more than
once, it does not currently cause an error, and even though the result of doing
so is officially undefined, it will currently take the last specified value.

You may also specify a single meta parameter struct. This is useful if you’d
like to reuse a value, or build a combined value programmatically. For example:

file "/tmp/f1" {
	content => "hello!\n",

	Meta => $b ?: struct{
		noop => false,
		retry => -1,
		delay => 0,
		poll => 5,
		limit => 4.2,
		burst => 3,
		sema => ["foo:1", "bar:3",],
		autoedge => true,
		autogroup => false,
	},
}

Remember that the top-level Meta field supports the elvis operator, while the
individual struct fields in the struct type do not. This is to be expected, but
since they are syntactically similar, it is worth mentioning to avoid confusion.

Please note that at the moment, you must specify a full metaparams struct, since
partial struct types are currently not supported in the language. Patches are
welcome if you’d like to add this tricky feature!

Resource naming

Each resource must have a unique name of type str that is used to uniquely
identify that resource, and can be used in the functioning of the resource at
that resources discretion. For example, the file resource uses the unique name
value to specify the path.

Alternatively, the name value may be a list of strings []str to build a list
of resources, each with a name from that list. When this is done, each resource
will use the same set of parameters. The list of internal edges specified in the
same resource block is created intelligently to have the appropriate edge for
each separate resource.

Using this construct is a veiled form of looping (iteration). This technique is
one of many ways you can perform iterative tasks that you might have
traditionally used a for loop for instead. This is preferred, because flow
control is error-prone and can make for less readable code.

Internal edges

Resources may also declare edges internally. The edges may point to or from
another resource, and may optionally include a notification. The four properties
are: Before, Depend, Notify and Listen. The first two represent normal
edge dependencies, and the second two are normal edge dependencies that also
send notifications. You may have multiples of these per resource, including
multiple Depend lines if necessary. Each of these properties also supports the
conditional inclusion elvis operator as well.

For example, you may write is:

$b = true # for example purposes
if $b {
	pkg "drbd" {
		state => "installed",

		# multiple properties may be used in the same resource
		Before => File["/etc/drbd.conf"],
		Before => Svc["drbd"],
	}
}
file "/etc/drbd.conf" {
	content => "some config",

	Depend => $b ?: Pkg["drbd"],
	Notify => Svc["drbd"],
}
svc "drbd" {
	state => "running",
}

There are two unique properties about these edges that is different from what
you might expect from other automation software:

	The ability to specify multiples of these properties allows you to avoid
having to manage arrays and conditional trees of these different dependencies.

	The keywords all have the same length, which means your code lines up nicely.

Edge

Edges express dependencies in the graph of resources which are output. They can
be chained as a pair, or in any greater number. For example, you may write:

Pkg["drbd"] -> File["/etc/drbd.conf"] -> Svc["drbd"]

to express a relationship between three resources. The first character in the
resource kind must be capitalized so that the parser can’t ascertain
unambiguously that we are referring to a dependency relationship.

Class

A class is a grouping structure that bind’s a list of statements to a name in
the scope where it is defined. It doesn’t directly produce any output. To
produce output it must be called via the include statement.

Defining classes follows the same scoping and shadowing rules that is applied to
the bind statement, although they exist in a separate namespace. In other
words you can have a variable named foo and a class named foo in the same
scope without any conflicts.

Classes can be both parameterized or naked. If a parameterized class is defined,
then the argument types must be either specified manually, or inferred with the
type unification algorithm. One interesting property is that the same class
definition can be used with include via two different input signatures,
although in practice this is probably fairly rare. Some usage examples include:

A naked class definition:

class foo {
	# some statements go here
}

A parameterized class with both input types being inferred if possible:

class bar($a, $b) {
	# some statements go here
}

A parameterized class with one type specified statically and one being inferred:

class baz($a str, $b) {
	# some statements go here
}

Classes can also be nested within other classes. Here’s a contrived example:

import "fmt"
class c1($a, $b) {
	# nested class definition
	class c2($c) {
		test $a {
			stringptr => fmt.printf("%s is %d", $b, $c),
		}
	}

	if $a == "t1" {
		include c2(42)
	}
}

Defining polymorphic classes was considered but is not currently allowed at this
time.

Recursive classes are not currently supported and it is not clear if they will
be in the future. Discussion about this topic is welcome on the mailing list.

Include

The include statement causes the previously defined class to produce the
contained output. This statement must be called with parameters if the named
class is defined with those.

The defined class can be called as many times as you’d like either within the
same scope or within different scopes. If a class uses inferred type input
parameters, then the same class can even be called with different signatures.
Whether the output is useful and whether there is a unique type unification
solution is dependent on your code.

Import

The import statement imports a scope into the specified namespace. A scope can
contain variable, class, and function definitions. All are statements.
Furthermore, since each of these have different logical uses, you could
theoretically import a scope that contains an int variable named foo, a
class named foo, and a function named foo as well. Keep in mind that
variables can contain functions (they can have a type of function) and are
commonly called lambdas.

There are a few different kinds of imports. They differ by the string contents
that you specify. Short single word, or multiple-word tokens separated by zero
or more slashes are system imports. Eg: math, fmt, or even math/trig.
Local imports are path imports that are relative to the current directory. They
can either import a single mcl file, or an entire well-formed module. Eg:
file1.mcl or dir1/. Lastly, you can have a remote import. This must be an
absolute path to a well-formed module. The common transport is git, and it can
be represented via an FQDN. Eg: git://github.com/purpleidea/mgmt-example1/.

The namespace that any of these are imported into depends on how you use the
import statement. By default, each kind of import will have a logic namespace
identifier associated with it. System imports use the last token in their name.
Eg: fmt would be imported as fmt and math/trig would be imported as
trig. Local imports do the same, except the required .mcl extension, or
trailing slash are removed. Eg: foo/file1.mcl would be imported as file1 and
bar/baz/ would be imported as baz. Remote imports use some more complex
rules. In general, well-named modules that contain a final directory name in the
form: mgmt-whatever/ will be named whatever. Otherwise, the last path token
will be converted to lowercase and the dashes will be converted to underscores.
The rules for remote imports might change, and should not be considered stable.

In any of the import cases, you can change the namespace that you’re imported
into. Simply add the as whatever text at the end of the import, and whatever
will be the name of the namespace. Please note that whatever is not surrounded
by quotes, since it is an identifier, and not a string. If you’d like to add
all of the import contents into the top-level scope, you can use the as * text
to dump all of the contents in. This is generally not recommended, as it might
cause a conflict with another identifier.

Stages

The mgmt compiler runs in a number of stages. In order of execution they are:

	Lexing

	Parsing

	Interpolation

	Scope propagation

	Type unification

	Function graph generation

	Function engine creation and validation

All of the above needs to be done every time the source code changes. After this
point, the function engine runs and
produces events. On every event, we “interpret”
which produces a resource graph. This series of resource graphs are passed
to the engine as they are produced.

What follows are some notes about each step.

Lexing

Lexing is done using nex [https://github.com/blynn/nex]. It is a pure-golang
implementation which is similar to Lex or Flex, but which produces golang
code instead of C. It integrates reasonably well with golang’s yacc which is
used for parsing. The token definitions are in:
lang/lexer.nex [https://github.com/purpleidea/mgmt/tree/master/lang/lexer.nex].
Lexing and parsing run together by calling the LexParse method.

Parsing

The parser used is golang’s implementation of
yacc [https://godoc.org/golang.org/x/tools/cmd/goyacc]. The documentation is
quite abysmal, so it’s helpful to rely on the documentation from standard yacc
and trial and error. One small advantage yacc has over standard yacc is that it
can produce error messages from examples. The best documentation is to examine
the source. There is a short write up available here [https://research.swtch.com/yyerror].
The yacc file exists at:
lang/parser.y [https://github.com/purpleidea/mgmt/tree/master/lang/parser.y].
Lexing and parsing run together by calling the LexParse method.

Interpolation

Interpolation is used to transform the AST (which was produced from lexing and
parsing) into one which is either identical or different. It expands strings
which might contain expressions to be interpolated (eg: "the answer is: ${foo}")
and can be used for other scenarios in which one statement or expression would
be better represented by a larger AST. Most nodes in the AST simply return their
own node address, and do not modify the AST.

Scope propagation

Scope propagation passes the parent scope (starting with the top-level, built-in
scope) down through the AST. This is necessary so that children nodes can access
variables in the scope if needed. Most AST node’s simply pass on the scope
without making any changes. The ExprVar node naturally consumes scope’s and
the StmtProg node cleverly passes the scope through in the order expected for
the out-of-order bind logic to work.

This step typically calls the ordering algorithm to determine the correct order
of statements in a program.

Type unification

Each expression must have a known type. The unpleasant option is to force the
programmer to specify by annotation every type throughout their whole program
so that each Expr node in the AST knows what to expect. Type annotation is
allowed in situations when you want to explicitly specify a type, or when the
compiler cannot deduce it, however, most of it can usually be inferred.

For type inferrence to work, each node in the AST implements a Unify method
which is able to return a list of invariants that must hold true. This starts at
the top most AST node, and gets called through to it’s children to assemble a
giant list of invariants. The invariants can take different forms. They can
specify that a particular expression must have a particular type, or they can
specify that two expressions must have the same types. More complex invariants
allow you to specify relationships between different types and expressions.
Furthermore, invariants can allow you to specify that only one invariant out of
a set must hold true.

Once the list of invariants has been collected, they are run through an
invariant solver. The solver can return either return successfully or with an
error. If the solver returns successfully, it means that it has found a trivial
mapping between every expression and it’s corresponding type. At this point it
is a simple task to run SetType on every expression so that the types are
known. If the solver returns in error, it is usually due to one of two
possibilities:

	Ambiguity

The solver does not have enough information to make a definitive or
unique determination about the expression to type mappings. The set of
invariants is ambiguous, and we cannot continue. An error will be
returned to the programmer. In this scenario the user will probably need
to add a type annotation, possibly because of a design bug in the user’s
program.

	Conflict

The solver has conflicting information that cannot be reconciled. In
this situation an explicit conflict has been found. If two invariants
are found which both expect a particular expression to have different
types, then it is not possible to find a valid solution. This almost
always happens if the user has made a type error in their program.

Only one solver currently exists, but it is possible to easily plug in an
alternate implementation if someone more skilled in the art of solver design
would like to propose a more logical or performant variant.

Function graph generation

At this point we have a fully type AST. The AST must now be transformed into a
directed, acyclic graph (DAG) data structure that represents the flow of data as
necessary for everything to be reactive. Note that this graph is different
from the resource graph which is produced and sent to the engine. It is just a
coincidence that both happen to be DAG’s. (You don’t freak out when you see a
list data structure show up in more than one place, do you?)

To produce this graph, each node has a Graph method which it can call. This
starts at the top most node, and is called down through the AST. The edges in
the graphs must represent the individual expression values which are passed
from node to node. The names of the edges must match the function type argument
names which are used in the definition of the corresponding function. These
corresponding functions must exist for each expression node and are produced by
calling that expression’s Func method. These are usually called by the
function engine during function creation and validation.

Function engine creation and validation

Finally we have a graph of the data flows. The function engine must first
initialize which creates references to each of the necessary function
implementations, and gets information about each one. It then needs to be type
checked to ensure that the data flows all correctly match what is expected. If
you were to pass an int to a function expecting a bool, this would be a
problem. If all goes well, the program should get run shortly.

Function engine running and interpret

At this point the function engine runs. It produces a stream of events which
cause the Output() method of the top-level program to run, which produces the
list of resources and edges. These are then transformed into the resource graph
which is passed to the engine.

Function API

If you’d like to create a built-in, core function, you’ll need to implement the
function API interface named Func. It can be found in
lang/interfaces/func.go [https://github.com/purpleidea/mgmt/tree/master/lang/interfaces/func.go].
Your function must have a specific type. For example, a simple math function
might have a signature of func(x int, y int) int. As you can see, all the
types are known before compile time.

A separate discussion on this matter can be found in the function guide.

What follows are each of the method signatures and a description of each.
Failure to implement the API correctly can cause the function graph engine to
block, or the program to panic.

Info

Info() *Info

The Info method must return a struct containing some information about your
function. The struct has the following type:

type Info struct {
	Sig *types.Type // the signature of the function, must be KindFunc
}

You must implement this correctly. Other fields in the Info struct may be
added in the future. This method is usually called before any other, and should
not depend on any other method being called first. Other methods must not depend
on this method being called first.

Example

func (obj *FooFunc) Info() *interfaces.Info {
	return &interfaces.Info{
		Sig: types.NewType("func(a str, b int) float"),
	}
}

Init

Init(*Init) error

Init is called by the function graph engine to create an implementation of this
function. It is passed in a struct of the following form:

type Init struct {
	Hostname string // uuid for the host
	Input chan types.Value // Engine will close `input` chan
	Output chan types.Value // Stream must close `output` chan
	World resources.World
	Debug bool
	Logf func(format string, v ...interface{})
}

These values and references may be used (wisely) inside your function. Input
will contain a channel of input structs matching the expected input signature
for your function. Output will be the channel which you must send values to
whenever a new value should be produced. This must be done in the Stream()
function. You may carefully use World to access functionality provided by the
engine. You may use Logf to log informational messages, however there is no
guarantee that they will be displayed to the user. Debug specifies whether the
function is running in a user-requested debug mode. This might cause you to want
to print more log messages for example. You will need to save references to any
or all of these info fields that you wish to use in the struct implementing this
Func interface. At a minimum you will need to save Output as a minimum of
one value must be produced.

Example

Please see the example functions in
[lang/funcs/core/](https://github.com/purpleidea/mgmt/tree/master/lang/funcs/core/).

Stream

Stream() error

Stream is called by the function engine when it is ready for your function to
start accepting input and producing output. You must always produce at least one
value. Failure to produce at least one value will probably cause the function
engine to hang waiting for your output. This function must close the Output
channel when it has no more values to send. The engine will close the Input
channel when it has no more values to send. This may or may not influence
whether or not you close the Output channel.

Example

Please see the example functions in
[lang/funcs/core/](https://github.com/purpleidea/mgmt/tree/master/lang/funcs/core/).

Close

Close() error

Close asks the particular function to shutdown its Stream() function and
return.

Example

Please see the example functions in
[lang/funcs/core/](https://github.com/purpleidea/mgmt/tree/master/lang/funcs/core/).

Polymorphic Function API

For some functions, it might be helpful to be able to implement a function once,
but to have multiple polymorphic variants that can be chosen at compile time.
For this more advanced topic, you will need to use the
Polymorphic Function API. This will help with code
reuse when you have a small, finite number of possible type signatures, and also
for more complicated cases where you might have an infinite number of possible
type signatures. (eg: []str, or [][]str, or [][][]str, etc…)

Suppose you want to implement a function which can assume different type
signatures. The mgmt language does not support polymorphic types– you must use
static types throughout the language, however, it is legal to implement a
function which can take different specific type signatures based on how it is
used. For example, you might wish to add a math function which could take the
form of func(x int, x int) int or func(x float, x float) float depending on
the input values. You might also want to implement a function which takes an
arbitrary number of input arguments (the number must be statically fixed at the
compile time of your program though) and which returns a string.

The PolyFunc interface adds additional methods which you must implement to
satisfy such a function implementation. If you’d like to implement such a
function, then please notify the project authors, and they will expand this
section with a longer description of the process.

Examples

What follows are a few examples that might help you understand some of the
language details.

Example Foo

TODO: please add an example here!

Example Bar

TODO: please add an example here!

Frequently asked questions

(Send your questions as a patch to this FAQ! I’ll review it, merge it, and
respond by commit with the answer.)

What is the difference between ExprIf and StmtIf?

The language contains both an if expression, and and if statement. An if
expression takes a boolean conditional and it must contain exactly two
branches (a then and an else branch) which each contain one expression. The
if expression will return the value of one of the two branches based on the
conditional.

Example:

this is an if expression, and both branches must exist
$b = true
$x = if $b {
	42
} else {
	-13
}

The if statement also takes a boolean conditional, but it may have either one
or two branches. Branches must only directly contain statements. The if
statement does not return any value, but it does produce output when it is
evaluated. The output consists primarily of resources (vertices) and edges.

Example:

this is an if statement, and in this scenario the else branch was omitted
$b = true
if $b {
	file "/tmp/hello" {
		content => "world",
	}
}

What is the difference types.Value.Str() and types.Value.String()?

In the lang/types library, there is a types.Value interface. Every value in
our type system must implement this interface. One of the methods in this
interface is the String() string method. This lets you print a representation
of the value. You will probably never need to use this method.

In addition, the types.Value interface implements a number of helper functions
which return the value as an equivalent golang type. If you know that the value
is a bool, you can call x.Bool() on it. If it’s a string you can call
x.Str(). Make sure not to call one of those type methods unless you know the
value is of that type, or you will trigger a panic!

I created a &ListValue{} but it’s not working!

If you create a base type like bool, str, int, or float, all you need to
do is build the &BoolValue and set the V field. Eg:

someBool := &types.BoolValue{V: true}

If you are building a container type like list, map, struct, or func,
then you also need to specify the type of the contained values. This is
because a list has a type of []str, or []int, or even [][]foo. Eg:

someListOfStrings := &types.ListValue{
	T: types.NewType("[]str"),	# must match the contents!
	V: []types.Value{
		&types.StrValue{V: "a"},
		&types.StrValue{V: "bb"},
		&types.StrValue{V: "ccc"},
	},
}

If you don’t build these properly, then you will cause a panic! Even empty lists
have a type.

Is the class statement a singleton?

Not really, but practically it can be used as such. The class statement is not
a singleton since it can be called multiple times in different locations, and it
can also be parameterized and called multiple times (with include) using
different input parameters. The reason it can be used as such is that statement
output (from multple classes) that is compatible (and usually identical) will
be automatically collated and have the duplicates removed. In that way, you can
assume that an unparameterized class is always a singleton, and that
parameterized classes can often be singletons depending on their contents and if
they are called in an identical way or not. In reality the de-duplication
actually happens at the resource output level, so anything that produces
multiple compatible resources is allowed.

Are recursive class definitions supported?

Recursive class definitions where the contents of a class contain a
self-referential include, either directly, or with indirection via any other
number of classes is not supported. It’s not clear if it ever will be in the
future, unless we decide it’s worth the extra complexity. The reason is that our
FRP actually generates a static graph which doesn’t change unless the code does.
To support dynamic graphs would require our FRP to be a “higher-order” FRP,
instead of the simpler “first-order” FRP that it is now. You might want to
verify that I got the nomenclature [https://github.com/gelisam/frp-zoo]
correct. If it turns out that there’s an important advantage to supporting a
higher-order FRP in mgmt, then we can consider that in the future.

I realized that recursion would require a static graph when I considered the
structure required for a simple recursive class definition. If some “depth”
value wasn’t known statically by compile time, then there would be no way to
know how large the graph would grow, and furthermore, the graph would need to
change if that “depth” value changed.

I don’t like the mgmt language, is there an alternative?

Yes, the language is just one of the available “frontends” that passes a stream
of graphs to the engine “backend”. While it is the recommended way of using
mgmt, you’re welcome to either use an alternate frontend, or write your own. To
write your own frontend, you must implement the
GAPI [https://github.com/purpleidea/mgmt/blob/master/gapi/gapi.go] interface.

I’m an expert in FRP, and you got it all wrong; even the names of things!

I am certainly no expert in FRP, and I’ve certainly got lots more to learn. One
thing FRP experts might notice is that some of the concepts from FRP are either
named differently, or are notably absent.

In mgmt, we don’t talk about behaviours, events, or signals in the strict FRP
definitons of the words. Firstly, because we only support discretized, streams
of values with no plan to add continuous semantics. Secondly, because we prefer
to use terms which are more natural and relatable to what our target audience is
expecting. Our users are more likely to have a background in Physiology, or
systems administration than a background in FRP.

Having said that, we hope that the FRP community will engage with us and help
improve the parts that we got wrong. Even if that means adding continuous
behaviours!

This is brilliant, may I give you a high-five?

Thank you, and yes, probably. “Props” may also be accepted, although patches are
preferred. If you can’t do either, donations [https://purpleidea.com/misc/donate/]
to support the project are welcome too!

Where can I find more information about mgmt?

Additional blog posts, videos and other material
is available! [https://github.com/purpleidea/mgmt/blob/master/docs/on-the-web].

Suggestions

If you have any ideas for changes or other improvements to the language, please
let us know! We’re still pre 1.0 and pre 0.1 and happy to change it in order to
get it right!

On the web

Here is a list of places mgmt has appeared on the web. Feel free to send a patch
if we missed something that you think is relevant!

Links

Author	Format	Subject
—	—	—
James Shubin	blog	Next generation configuration mgmt [https://purpleidea.com/blog/2016/01/18/next-generation-configuration-mgmt/]
James Shubin	video	Introductory recording from DevConf.cz 2016 [https://www.youtube.com/watch?v=GVhpPF0j-iE&html5=1]
James Shubin	video	Introductory recording from CfgMgmtCamp.eu 2016 [https://www.youtube.com/watch?v=fNeooSiIRnA&html5=1]
Julian Dunn	video	On mgmt at CfgMgmtCamp.eu 2016 [https://www.youtube.com/watch?v=kfF9IATUask&t=1949&html5=1]
Walter Heck	slides	On mgmt at CfgMgmtCamp.eu 2016 [http://www.slideshare.net/olindata/configuration-management-time-for-a-4th-generation/3]
Marco Marongiu	blog	On mgmt [http://syslog.me/2016/02/15/leap-or-die/]
Felix Frank	blog	From Catalog To Mgmt (on puppet to mgmt “transpiling”) [https://ffrank.github.io/features/2016/02/18/from-catalog-to-mgmt/]
James Shubin	blog	Automatic edges in mgmt (…and the pkg resource) [https://purpleidea.com/blog/2016/03/14/automatic-edges-in-mgmt/]
James Shubin	blog	Automatic grouping in mgmt [https://purpleidea.com/blog/2016/03/30/automatic-grouping-in-mgmt/]
John Arundel	tweet	“Puppet’s days are numbered.” [https://twitter.com/bitfield/status/732157519142002688]
Felix Frank	blog	Puppet, Meet Mgmt (on puppet to mgmt internals) [https://ffrank.github.io/features/2016/06/12/puppet,-meet-mgmt/]
Felix Frank	blog	Puppet Powered Mgmt (puppet to mgmt tl;dr) [https://ffrank.github.io/features/2016/06/19/puppet-powered-mgmt/]
James Shubin	blog	Automatic clustering in mgmt [https://purpleidea.com/blog/2016/06/20/automatic-clustering-in-mgmt/]
James Shubin	video	Recording from CoreOSFest 2016 [https://www.youtube.com/watch?v=KVmDCUA42wc&html5=1]
James Shubin	video	Recording from DebConf16 [http://meetings-archive.debian.net/pub/debian-meetings/2016/debconf16/Next_Generation_Config_Mgmt.webm] (Slides [https://annex.debconf.org//debconf-share/debconf16/slides/15-next-generation-config-mgmt.pdf])
Felix Frank	blog	Edging It All In (puppet and mgmt edges) [https://ffrank.github.io/features/2016/07/12/edging-it-all-in/]
Felix Frank	blog	Translating All The Things (puppet to mgmt translation warnings) [https://ffrank.github.io/features/2016/08/19/translating-all-the-things/]
James Shubin	video	Recording from systemd.conf 2016 [https://www.youtube.com/watch?v=jB992Zb3nH0&html5=1]
James Shubin	blog	Remote execution in mgmt [https://purpleidea.com/blog/2016/10/07/remote-execution-in-mgmt/]
James Shubin	video	Recording from High Load Strategy 2016 [https://vimeo.com/191493409]
James Shubin	video	Recording from NLUUG 2016 [https://www.youtube.com/watch?v=MmpwOQAb_SE&html5=1]
James Shubin	blog	Send/Recv in mgmt [https://purpleidea.com/blog/2016/12/07/sendrecv-in-mgmt/]
Julien Pivotto	blog	Augeas resource for mgmt [https://roidelapluie.be/blog/2017/02/14/mgmt-augeas/]
James Shubin	blog	Metaparameters in mgmt [https://purpleidea.com/blog/2017/03/01/metaparameters-in-mgmt/]
James Shubin	video	Recording from Incontro DevOps 2017 [https://vimeo.com/212241877]
Yves Brissaud	blog	mgmt aux HumanTalks Grenoble (french) [http://log.winsos.net/2017/04/12/mgmt-aux-human-talks-grenoble.html]
James Shubin	video	Recording from OSDC Berlin 2017 [https://www.youtube.com/watch?v=LkEtBVLfygE&html5=1]
Jonathan Gold	blog	AWS:EC2 in mgmt [https://jonathangold.ca/blog/aws-ec2-in-mgmt/]
James Shubin	video	Recording from OSMC Nuremberg 2017 [https://www.youtube.com/watch?v=hSVadQLeplU&html5=1]
James Shubin	video	Recording from LCA 2018, Developers Miniconf [https://www.youtube.com/watch?v=OvgGfW0ilbE]
James Shubin	video	Recording from LCA 2018, Sysadmin Miniconf [https://www.youtube.com/watch?v=ELq1XOJMIPY]
James Shubin	video	Recording from LCA 2018, Main Conference [https://www.youtube.com/watch?v=_9PG64AOQ3w]
James Shubin	video	Recording from DevConf.cz 2017 [https://www.youtube.com/watch?v=-FPEK08l1Zk]
James Shubin	video	Recording from FOSDEM 2018, Config Management Devroom [https://video.fosdem.org/2018/UA2.114/mgmt.webm]
James Shubin	blog	Mgmt Configuration Language [https://purpleidea.com/blog/2018/02/05/mgmt-configuration-language/]
James Shubin	video	Recording from CfgMgmtCamp.eu 2018 [https://www.youtube.com/watch?v=NxObmwZDyrI]
Jonathan Gold	blog	Go Netlink and Select [https://jonathangold.ca/blog/go-netlink-and-select/]
James Shubin	video	Recording from DevOpsDays Montreal 2018 [https://www.youtube.com/watch?v=1i38c5cooHo]
James Shubin	video	Recording from FOSDEM Minimalistic Languages Devroom 2019 [https://video.fosdem.org/2019/K.4.201/mgmtconfig.webm]
James Shubin	video	Recording from FOSDEM Infra Management Devroom 2019 [https://video.fosdem.org/2019/UB2.252A/mgmt.webm]
James Shubin	video	Recording from FOSDEM Graph Processing Devroom 2019 [https://video.fosdem.org/2019/H.1308/graph_mgmt_config.webm]
James Shubin	video	Recording from FOSDEM Virtualization Devroom 2019 [https://video.fosdem.org/2019/H.2213/vai_real_time_virtualization_automation.webm]
James Shubin	video	Recording from FOSDEM Containers Devroom 2019 [https://video.fosdem.org/2019/UA2.114/containers_mgmt.webm]
James Shubin	video	Recording from FOSDEM Monitoring Devroom 2019 [https://video.fosdem.org/2019/UB2.252A/real_time_merging_of_config_management_and_monitoring.webm]
James Shubin	blog	Mgmt Configuration Language: Class and Include [https://purpleidea.com/blog/2019/07/26/class-and-include-in-mgmt/]

Resources

Here we list all the built-in resources and their properties. The resource
primitives in mgmt are typically more powerful than resources in other
configuration management systems because they can be event based which lets them
respond in real-time to converge to the desired state. This property allows you
to build more complex resources that you probably hadn’t considered in the past.

In addition to the resource specific properties, there are resource properties
(otherwise known as parameters) which can apply to every resource. These are
called meta parameters and are listed
separately. Certain meta parameters aren’t very useful when combined with
certain resources, but in general, it should be fairly obvious, such as when
combining the noop meta parameter with the Noop resource.

You might want to look at the generated documentation [https://godoc.org/github.com/purpleidea/mgmt/engine/resources]
for more up-to-date information about these resources.

	Augeas: Manipulate files using augeas.

	Docker:Container Manage docker containers.

	Exec: Execute shell commands on the system.

	File: Manage files and directories.

	Group: Manage system groups.

	Hostname: Manages the hostname on the system.

	KV: Set a key value pair in our shared world database.

	Msg: Send log messages.

	Net: Manage a local network interface.

	Noop: A simple resource that does nothing.

	Nspawn: Manage systemd-machined nspawn containers.

	Password: Create random password strings.

	Pkg: Manage system packages with PackageKit.

	Print: Print messages to the console.

	Svc: Manage system systemd services.

	Test: A mostly harmless resource that is used for internal testing.

	Timer: Manage system systemd services.

	User: Manage system users.

	Virt: Manage virtual machines with libvirt.

Augeas

The augeas resource uses augeas [http://augeas.net/] commands to manipulate
files.

Docker

Container

The docker:container resource manages docker containers.

It has the following properties:

	state: either running, stopped, or removed

	image: docker image or image:tag

	cmd: a command or list of commands to run on the container

	env: a list of environment variables, e.g. ["VAR=val",],

	ports: a map of portmappings, e.g. {"tcp" => {80 => 8080, 443 => 8443,},},

	apiversion: override the host’s default docker version, e.g. "v1.35"

	force: destroy and rebuild the container instead of erroring on wrong image

Exec

The exec resource can execute commands on your system.

File

The file resource manages files and directories. In mgmt, directories are
identified by a trailing slash in their path name. File have no such slash.

It has the following properties:

	path: absolute file path (directories have a trailing slash here)

	state: either exists, absent, or undefined

	content: raw file content

	mode: octal unix file permissions

	owner: username or uid for the file owner

	group: group name or gid for the file group

Path

The path property specifies the file or directory that we are managing.

State

The state property describes the action we’d like to apply for the resource. The
possible values are: exists and absent. If you do not specify either of
these, it is undefined. Without specifying this value as exists, another param
cannot cause a file to get implicitly created. When specifying this value as
absent, you should not specify any other params that would normally change the
file. For example, if you specify content and this param is absent, then you
will get an engine validation error.

Content

The content property is a string that specifies the desired file contents.

Source

The source property points to a source file or directory path that we wish to
copy over and use as the desired contents for our resource.

Recurse

The recurse property limits whether file resource operations should recurse into
and monitor directory contents with a depth greater than one.

Force

The force property is required if we want the file resource to be able to change
a file into a directory or vice-versa. If such a change is needed, but the force
property is not set to true, then this file resource will error.

Group

The group resource manages the system groups from /etc/group.

Hostname

The hostname resource manages static, transient/dynamic and pretty hostnames
on the system and watches them for changes.

static_hostname

The static hostname is the one configured in /etc/hostname or a similar
file.
It is chosen by the local user. It is not always in sync with the current
host name as returned by the gethostname() system call.

transient_hostname

The transient / dynamic hostname is the one configured via the kernel’s
sethostbyname().
It can be different from the static hostname in case DHCP or mDNS have been
configured to change the name based on network information.

pretty_hostname

The pretty hostname is a free-form UTF8 host name for presentation to the user.

hostname

Hostname is the fallback value for all 3 fields above, if only hostname is
specified, it will set all 3 fields to this value.

KV

The KV resource sets a key and value pair in the global world database. This is
quite useful for setting a flag after a number of resources have run. It will
ignore database updates to the value that are greater in compare order than the
requested key if the SkipLessThan parameter is set to true. If we receive a
refresh, then the stored value will be reset to the requested value even if the
stored value is greater.

Key

The string key used to store the key.

Value

The string value to set. This can also be set via Send/Recv.

SkipLessThan

If this parameter is set to true, then it will ignore updating the value as
long as the database versions are greater than the requested value. The compare
operation used is based on the SkipCmpStyle parameter.

SkipCmpStyle

By default this converts the string values to integers and compares them as you
would expect.

Msg

The msg resource sends messages to the main log, or an external service such
as systemd’s journal.

Net

The net resource manages a local network interface using netlink.

Noop

The noop resource does absolutely nothing. It does have some utility in testing
mgmt and also as a placeholder in the resource graph.

Nspawn

The nspawn resource is used to manage systemd-machined style containers.

Password

The password resource can generate a random string to be used as a password. It
will re-generate the password if it receives a refresh notification.

Pkg

The pkg resource is used to manage system packages. This resource works on many
different distributions because it uses the underlying packagekit facility which
supports different backends for different environments. This ensures that we
have great Debian (deb/dpkg) and Fedora (rpm/dnf) support simultaneously.

Print

The print resource prints messages to the console.

Svc

The service resource is still very WIP. Please help us by improving it!

Test

The test resource is mostly harmless and is used for internal tests.

Timer

This resource needs better documentation. Please help us by improving it!

User

The user resource manages the system users from /etc/passwd.

Virt

The virt resource can manage virtual machines via libvirt.

Style guide

This document aims to be a reference for the desired style for patches to mgmt,
and the associated mcl language. In particular it describes conventions which
are not officially enforced by tools and in test cases, or that aren’t clearly
defined elsewhere. We try to turn as many of these into automated tests as we
can. If something here is not defined in a test, or you think it should be,
please write one! Even better, you can write a tool to automatically fix it,
since this is more useful and can easily be turned into a test!

Overview for golang code

Most style issues are enforced by the gofmt tool. Other style aspects are
often common sense to seasoned programmers, and we hope this will be a useful
reference for new programmers.

There are a lot of useful code review comments described
here [https://github.com/golang/go/wiki/CodeReviewComments]. We don’t
necessarily follow everything strictly, but it is in general a very good guide.

Basics

	All of our golang code is formatted with gofmt.

Comments

All of our code is commented with the minimums required for godoc to function,
and so that our comments pass golint. Code comments should either be full
sentences (which end with a period, use proper punctuation, and capitalize the
first word when it is not a lower cased identifier), or are short one-line
comments in the source which are not full sentences and don’t end with a period.

They should explain algorithms, describe non-obvious behaviour, or situations
which would otherwise need explanation or additional research during a code
review. Notes about use of unfamiliar API’s is a good idea for a code comment.

Example

Here you can see a function with the correct godoc string. The first word must
match the name of the function. It is not capitalized because the function is
private.

// square multiplies the input integer by itself and returns this product.
func square(x int) int {
	return x * x // we don't care about overflow errors
}

Line length

In general we try to stick to 80 character lines when it is appropriate. It is
almost always appropriate for function godoc comments and most longer
paragraphs. Exceptions are always allowed based on the will of the maintainer.

It is usually better to exceed 80 characters than to break code unnecessarily.
If your code often exceeds 80 characters, it might be an indication that it
needs refactoring.

Occasionally inline, two line source code comments are used within a function.
These should usually be balanced so that you don’t have one line with 78
characters and the second with only four. Split the comment between the two.

Method receiver naming

Contrary [https://github.com/golang/go/wiki/CodeReviewComments#receiver-names]
to the specialized naming of the method receiver variable, we usually name all
of these obj for ease of code copying throughout the project, and for faster
identification when reviewing code. Some anecdotal studies have shown that it
makes the code easier to read since you don’t need to remember the name of the
method receiver variable in each different method. This is very similar to what
is done in python.

Example

// Bar does a thing, and returns the number of baz results found in our
database.
func (obj *Foo) Bar(baz string) int {
	if len(obj.s) > 0 {
		return strings.Count(obj.s, baz)
	}
	return -1
}

Consistent ordering

In general we try to preserve a logical ordering in source files which usually
matches the common order of execution that a lazy evaluator would follow.

This is also the order which is recommended when creating interface types. When
implementing an interface, arrange your methods in the same order that they are
declared in the interface.

When implementing code for the various types in the language, please follow this
order: bool, str, int, float, list, map, struct, func.

Overview for mcl code

The mcl language is quite new, so this guide will probably change over time as
we find what’s best, and hopefully we’ll be able to add an mclfmt tool in the
future so that less of this needs to be documented. (Patches welcome!)

Indentation

Code indentation is done with tabs. The tab-width is a private preference, which
is the beauty of using tabs: you can have your own personal preference. The
inventor of mgmt uses and recommends a width of eight, and that is what should
be used if your tool requires a modeline to be publicly committed.

Line length

We recommend you stick to 80 char line width. If you find yourself with deeper
nesting, it might be a hint that your code could be refactored in a more
pleasant way.

Capitalization

At the moment, variables, function names, and classes are all lowercase and do
not contain underscores. We will probably figure out what style to recommend
when the language is a bit further along. For example, we haven’t decided if we
should have a notion of public and private variables, and if we’d like to
reserve capitalization for this situation.

Module naming

We recommend you name your modules with an mgmt- prefix. For example, a module
about bananas might be named mgmt-banana. This is helpful for the useful magic
built-in to the module import code, which will by default take a remote import
like: import "https://github.com/purpleidea/mgmt-banana/" and namespace it as
banana. Of course you can always pick the namespace yourself on import with:
import "https://github.com/purpleidea/mgmt-banana/" as tomato or something
similar.

Licensing

We believe that sharing code helps reduce unnecessary re-invention, so that we
can stand on the shoulders of giants [https://en.wikipedia.org/wiki/Standing_on_the_shoulders_of_giants]
and hopefully make faster progress in science, medicine, exploration, etc… As
a result, we recommend releasing your modules under the LGPLv3+ [https://www.gnu.org/licenses/lgpl-3.0.en.html]
license for the maximum balance of freedom and re-usability. We strongly oppose
any CLA [https://en.wikipedia.org/wiki/Contributor_License_Agreement]
requirements and believe that the “inbound==outbound” [https://ref.fedorapeople.org/fontana-linuxcon.html#slide2]
rule applies. Lastly, we do not support software patents and we hope you don’t
either!

Suggestions

If you have any ideas for suggestions or other improvements to this guide,
please let us know!

 _static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

_static/down-pressed.png

_static/down.png

nav.xhtml

 Table of Contents

 		
 Welcome to mgmt’s documentation!

 		
 General documentation

 		
 Overview

 		
 Project Description

 		
 Setup

 		
 Features

 		
 Autoedges

 		
 Autogrouping

 		
 Automatic clustering

 		
 Remote (“agent-less”) mode

 		
 Puppet support

 		
 Reference

 		
 Overview of reference

 		
 Meta parameters

 		
 Lang metadata file

 		
 Graph definition file

 		
 Command line

 		
 Compilation options

 		
 Examples

 		
 Systemd:

 		
 Development

 		
 Authors

 		
 Quick start guide

 		
 Introduction

 		
 Getting mgmt

 		
 Downloading a pre-built release:

 		
 Building a release:

 		
 Installing a distro release

 		
 Running mgmt

 		
 Examples

 		
 Resource guide

 		
 Overview

 		
 Theory

 		
 Resource Prerequisites

 		
 Imports

 		
 Resource struct

 		
 Resource API

 		
 Default

 		
 Validate

 		
 Init

 		
 Close

 		
 CheckApply

 		
 Watch

 		
 Cmp

 		
 Traits

 		
 Refreshable

 		
 Edgeable

 		
 Groupable

 		
 Sendable

 		
 Recvable

 		
 Collectable

 		
 Resource Initialization

 		
 Program

 		
 Hostname

 		
 Running

 		
 Event

 		
 Done

 		
 Refresh

 		
 Send

 		
 Recv

 		
 World

 		
 VarDir

 		
 Debug

 		
 Logf

 		
 Further considerations

 		
 Resource registration

 		
 YAML Unmarshalling

 		
 Send/Recv

 		
 Composite resources

 		
 Frequently asked questions

 		
 Can I write resources in a different language?

 		
 Why does the resource API have CheckApply instead of two separate methods?

 		
 Why do resources have both a Cmp method and an IFF (on the UID) method?

 		
 What new resource primitives need writing?

 		
 Is the resource API stable? Does it ever change?

 		
 Where can I find more information about mgmt?

 		
 Suggestions

 		
 Prometheus support

 		
 Metrics

 		
 go metrics

 		
 etcd metrics

 		
 mgmt metrics

 		
 Alerting

 		
 Grafana

 		
 External resources

 		
 Puppet guide

 		
 Prerequisites

 		
 Testing the Puppet side

 		
 Writing a suitable manifest

 		
 Unsupported attributes

 		
 Unsupported resources

 		
 Avoiding common warnings

 		
 Configuring Puppet

 		
 Caveats

 		
 Using Puppet in conjunction with the mcl lang

 		
 Mixed graph example 1 - No merges

 		
 Mixed graph example 2 - Merged vertex

 		
 Mixed graph example 3 - Multiple merges

_static/minus.png

_static/plus.png

_static/file.png

_static/up.png

_static/up-pressed.png

